Novel Antireflection Coatings Obtained by Low-Temperature Annealing in the Presence of Tetrabutylammonium Bromide and Gold Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Silicon Dioxide Sol
2.2. Method of Obtaining Colloidal Gold Nanoparticles
2.3. The Method of Obtaining the Sol-Composition with the Addition of Colloidal Gold Nanoparticles
2.4. Preparation of a SiO2 Xerogel Film on Silicate Glass
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarkın, A.S.; Ekren, N.; Sağlam, S. A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol. Energy 2020, 199, 63–73. [Google Scholar] [CrossRef]
- Hou, G.; García, I.; Rey-Stolle, I. High-low refractive index stacks for broadband antireflection coatings for multijunction solar cells. Sol. Energy 2021, 217, 29–39. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Eshaghi, A. Fabrication of antireflective superhydrophobic thin film based on the TMMS with self-cleaning and anti-icing properties. Prog. Org. Coat. 2018, 122, 199–206. [Google Scholar] [CrossRef]
- Isakov, K.; Kauppinen, C.; Franssila, S.; Lipsanen, H. Superhydrophobic Antireflection Coating on Glass Using Grass-like Alumina and Fluoropolymer. ACS Appl. Mater. Interfaces 2020, 12, 49957–49962. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Zhang, Z.; Omotosho, K.D.; Berman, D.; Lee, B.; Divan, R.; Guha, S.; Shevchenko, E.V. Porous but Mechanically Robust All-Inorganic Antireflective Coatings Synthesized using Polymers of Intrinsic Microporosity. ACS Nano 2022, 16, 14754–14764. [Google Scholar] [CrossRef] [PubMed]
- Ai, L.; Zhang, J.; Li, X.; Zhang, X.; Lu, Y.; Song, W. Universal low-temperature process for preparation of multifunctional high-performance antireflective mesoporous silica coatings on transparent polymeric substrates. Appl. Mater. Interfaces 2018, 10, 4993–4999. [Google Scholar] [CrossRef]
- Maiorov, V.A. Self-cleaning glass. Glass Phys. Chem. 2019, 45, 161–174. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, X.; Li, B.; He, J.; Zheng, W. Straightforward approach to antifogging, antireflective, dual- function, nanostructured coatings. Langmuir 2019, 35, 11351–11357. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Zhao, S.; Dong, W. Hydrophobic and optical properties of silica antireflective coatingprepared via sol-gel method. Mater. Res. Express 2021, 8, 046403. [Google Scholar] [CrossRef]
- Kha, S.B.; Irfan, S.; Zhuanghao, Z.; Lee, S.L. Influence of refractive index on antireflectance efficiency of thin films. Materials 2019, 12, 1483. [Google Scholar] [CrossRef]
- Buskens, P.; Burghoorn, M.; Mourad, M.C.D.; Vroon, Z. Antireflective coatings for glass and transparent polymers. Langmuir 2016, 32, 6781–6793. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.H.; Huang, J.Y.; Fei, G.T.; Wei, Y.S.; Yuan, L.G.; Wang, B. Sol-Gel preparation of high transmittance of infrared antireflective coating for TeO2 crystals. Infrared Phys. Technol. 2021, 118, 103881. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, Y.; Zhang, X.; Hu, T.; Ji, R.; Ding, B.; Jiang, B. Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflectivecoating for solarcellcoverglass. Sol. Energy Mater. Sol. Cells 2013, 111, 160–164. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Q.; Cheng, Y.; Liu, L.; Shan, Y.; Zhang, G.; Li, D. Moth-eye-like antireflection coatings based on close-packed solid/hollow silica nanospheres. J. Sol-Gel Sci. Technol. 2019, 90, 330–338. [Google Scholar] [CrossRef]
- Shevchenko, V.Y.; Shilova, O.A.; Kochina, T.A.; Barinova, L.D.; Belyi, O.V. Improving the safety of the transportation system and resource conservation through the introduction of environmentally safe protective coatings. Glass Phys. Chem. 2019, 45, 1–9. [Google Scholar] [CrossRef]
- Topcu, A.S.K.; Erdogan, E.; Cengiz, U. Preparation of stable, transparent superhydrophobic film via one step one pot sol-gel method. Colloid Polym. Sci. 2018, 296, 1523–1532. [Google Scholar] [CrossRef]
- Agustín-Sáenz, C.; Sánchez-García, J.A.; Machado, M.; Brizuela, M.; Zubillaga, O.; Tercjak, A. Broadband antireflective coating stack based on mesoporous silica by acid catalyzed sol-gel method for concentrated photovoltaic application. Sol. Energy Mater. Sol. Cells 2018, 186, 154–164. [Google Scholar] [CrossRef]
- Braun, M.M.; Pilon, L. Effective optical properties of non-absorbing nanoporous thin films. Thin Solid Films 2006, 496, 501–514. [Google Scholar] [CrossRef]
- Swathi, R.; Shanthi, J.; Anoop, K.K. Superhydrophilic TEOS/PF-127 based antireflection coating for solar and optical applications. Opt. Mater. 2021, 118, 111246. [Google Scholar] [CrossRef]
- Xu, D.; Yu, Q.; Chen, T.; Zhong, S.; Ma, J.; Bao, L.; Zhang, L.; Zhao, F.; Du, S. Effects of PEG1000 and sol concentration on the structural and optical properties of sol–gel ZnO porous thin films. Materials 2018, 11, 1840. [Google Scholar] [CrossRef]
- Ghazaryan, L.; Sekman, Y.; Schröder, S.; Mühlig, C.; Stevanovic, I.; Botha, R.; Aghaee, M.; Creatore, M.; Tünnermann, A.; Szeghalmi, A. On the properties of nanoporous SiO2 films for single layer antireflection coating. Adv. Eng. Mater. 2019, 21, 1801229. [Google Scholar] [CrossRef]
- Troitskii, B.B.; Lokteva, A.A.; Novikova, M.A.; Lopatin, M.A. Properties of antireflective nanoporous silica coatings on silicate glass depending on the rate of the dip coating. Glass Phys. Chem. 2020, 46, 260–266. [Google Scholar] [CrossRef]
- Troitskii, B.B.; Lokteva, A.A.; Novikova, M.A.; Lopatina, T.I.; Fedyushkin, I.L. Optimal optical properties–hardness ratio of antireflection coating produced from a silica sol with hexadecyltrimethylammonium bromide on silicate glass. Russ. J. Appl. Chem. 2020, 93, 232–237. [Google Scholar] [CrossRef]
- Brinker, C.J.; Lu, Y.; Sellinger, A.; Fan, H. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11, 579–585. [Google Scholar] [CrossRef]
- Takei, T.; Iguchi, N.; Haruta, M. Support effect in the gas phase oxidation of ethanol over nanoparticulate gold catalysts. New J. Chem. 2011, 35, 2227–2233. [Google Scholar] [CrossRef]
- Abad, A.; Concepcion, P.; Corma, A.; Garcia, H. A Collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew. Chem. Int. Ed. 2005, 44, 4066–4069. [Google Scholar] [CrossRef]
- Gong, J.; Buddie Mullins, C. Surface science investigations of oxidative chemistry on gold. Acc. Chem. Res. 2009, 42, 1063–1073. [Google Scholar] [CrossRef]
- Guan, Y.; Hensen, E.J.M. Selective oxidation of ethanol to acetaldehyde by Au-Ir catalysts. J. Catal. 2013, 305, 135–145. [Google Scholar] [CrossRef]
- Sobolev, V.I.; Koltunov, K.Y.; Simakova, O.A.; Leino, A.-R.; Murzin, D.Y. Low temperature gas-phase oxidation of ethanol over Au/TiO2. Appl. Catal. A Gen. 2012, 433–434, 88–95. [Google Scholar] [CrossRef]
- Thompson, D.T. Using gold nanoparticles for catalysis. Nanotoday 2007, 2, 40–43. [Google Scholar] [CrossRef]
- Hvolbæk, B.; Janssens, T.V.W.; Clausen, B.S.; Falsig, H.; Christensen, C.H.; Nørskov, J.K. Catalytic activity of Au nanoparticles. Nanotoday 2007, 2, 15–18. [Google Scholar] [CrossRef]
- Ayati, A.; Ahmadpour, A.; Bamoharram, F.F.; Tanhaei, B.; Mänttäri, M.; Sillanpää, M. A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 2014, 107, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Bogacheva, N.V.; Smirnova, D.N.; Darmov, I.V.; Krupina, K.A. A Method for Producing Colloidal Gold Nanoparticles with an Average Diameter of 25–30 nm. RU Patent 2644466C2, 12 February 2018. [Google Scholar]
- Xu, J.; Liu, Y.; Du, W.; Lei, W.; Si, X.; Zhou, T.; Lin, J.; Peng, L. Superhydrophobic silica antireflective coatings with high transmittance via one-step sol-gel process. Thin Solid Films 2017, 631, 193–199. [Google Scholar] [CrossRef]
- Lin, W.; Zheng, J.; Zhuo, J.; Chen, H.; Zhang, X. Characterization of sol-gel ORMOSIL antireflective coatings from phenyltriethoxysilane and tetraethoxysilane: Microstructure control and application. Surf. Coat. Technol. 2018, 345, 177–182. [Google Scholar] [CrossRef]
- Reid, B.; Taylor, A.; Chen, Y.; Schmidt-Hansberg, B.; Guldin, S. Robust operation of mesoporous antireflective coatings under variable ambient conditions. ACS Appl. Mater. Interfaces 2018, 10, 10315–10321. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Rubner, M.F.; Cohen, R.E. All-nanoparticle thin-film coatings. Nano Lett. 2006, 6, 2305–2312. [Google Scholar] [CrossRef]
- Teisala, H.; Tuominen, M.; Kuusipalo, J. Superhydrophobic coatings on cellulosebased materials: Fabrication, properties, and applications. Adv. Mater. Interfaces 2014, 1, 1300026. [Google Scholar] [CrossRef]
- Morozov, A.G.; Troitskii, B.B.; Lokteva, A.A.; Lopatina, T.I.; Baten’kin, M.A.; Fedyushkin, I.L.; Mamaev, Y.A. Deposition of silicon dioxide antireflection coatings on glass by sol-gel method in the presence of Pluronic® F127 block-copolymer. Russ. J. Appl. Chem. 2016, 89, 108–113. [Google Scholar] [CrossRef]
n | d, nm | T, % | T, °C | |
---|---|---|---|---|
SiO2/TBAB (5 wt.%) | 1.38 | 106.4 | ~92 | 200 |
SiO2/TBAB (5 wt.%)/Gold (2.6 × 10−9 mol/mL) | 1.42 | 108.5 | ~96.5 | 200 |
SiO2/F127 [39] | 1.33 | 112 | ~98 | 400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lokteva, A.A.; Kotelnikova, A.A.; Kovylin, R.S.; Konev, A.N.; Piskunov, A.V. Novel Antireflection Coatings Obtained by Low-Temperature Annealing in the Presence of Tetrabutylammonium Bromide and Gold Nanoparticles. Materials 2022, 15, 7658. https://doi.org/10.3390/ma15217658
Lokteva AA, Kotelnikova AA, Kovylin RS, Konev AN, Piskunov AV. Novel Antireflection Coatings Obtained by Low-Temperature Annealing in the Presence of Tetrabutylammonium Bromide and Gold Nanoparticles. Materials. 2022; 15(21):7658. https://doi.org/10.3390/ma15217658
Chicago/Turabian StyleLokteva, Alena A., Anastasiia A. Kotelnikova, Roman S. Kovylin, Alexey N. Konev, and Alexandr V. Piskunov. 2022. "Novel Antireflection Coatings Obtained by Low-Temperature Annealing in the Presence of Tetrabutylammonium Bromide and Gold Nanoparticles" Materials 15, no. 21: 7658. https://doi.org/10.3390/ma15217658
APA StyleLokteva, A. A., Kotelnikova, A. A., Kovylin, R. S., Konev, A. N., & Piskunov, A. V. (2022). Novel Antireflection Coatings Obtained by Low-Temperature Annealing in the Presence of Tetrabutylammonium Bromide and Gold Nanoparticles. Materials, 15(21), 7658. https://doi.org/10.3390/ma15217658