Crystal Structures and Electronic Properties of BaAu Compound under High Pressure
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, G.J.; Brust, M.; Schmidbaur, H. Gold—An introductory perspective. Chem. Soc. Rev. 2008, 37, 1759–1765. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, S.; Wei, G.; Yang, G.; Ma, Y. Gold with +4 and +6 Oxidation States in AuF4 and AuF6. J. Am. Chem. Soc. 2018, 140, 9545–9550. [Google Scholar] [CrossRef]
- Qin, Z.; Bischof, J.C. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 2012, 41, 1191–1217. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, M.C.; Laguna, A. Some recent highlights in gold chemistry. Gold Bull. 2003, 36, 83–92. [Google Scholar] [CrossRef][Green Version]
- Jansen, M. The chemistry of gold as an anion. Chem. Soc. Rev. 2008, 37, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Pyykkö, P. Theoretical chemistry of gold. II. Inorg. Chim. Acta 2005, 358, 4113–4130. [Google Scholar] [CrossRef]
- Guenther, J.; Mallet-Ladeira, S.; Estevez, L.; Miqueu, K.; Amgoune, A.; Bourissou, D. Activation of Aryl Halides at Gold(I): Practical Synthesis of (P,C) Cyclometalated Gold(III) Complexes. J. Am. Chem. Soc. 2014, 136, 1778–1781. [Google Scholar] [CrossRef]
- Rudolph, M.; Hashmi, A.S.K. Gold catalysis in total synthesis—An update. Chem. Soc. Rev. 2012, 41, 2448–2462. [Google Scholar] [CrossRef]
- Kodiyath, R.; Manikandan, M.; Liu, L.; Ramesh, G.V.; Koyasu, S.; Miyauchi, M.; Sakuma, Y.; Tanabe, T.; Gunji, T.; Dao, T.D.; et al. Visible-light photodecomposition of acetaldehyde by TiO2-coated gold nanocages: Plasmon-mediated hot electron transport via defect states. Chem. Commun. 2014, 50, 15553–15556. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Devillanova, F.A.; Isaia, F.; Lippolis, V.; Pintus, A. Gold(III) Complexes of Asymmetrically Aryl-Substituted 1,2-Dithiolene Ligands Featuring Potential-Controlled Spectroscopic Properties: An Insight into the Electronic Properties of bis(Pyren-1-yl-ethylene-1,2-dithiolato) Gold(III). Chem.-Asian J. 2011, 6, 198–208. [Google Scholar] [CrossRef]
- Motl, N.E.; Ewusi-Annan, E.; Sines, I.T.; Jensen, L.; Schaak, R.E. Au—Cu Alloy Nanoparticles with Tunable Compositions and Plasmonic Properties: Experimental Determination of Composition and Correlation with Theory. J. Phys. Chem. C 2010, 114, 19263–19269. [Google Scholar] [CrossRef]
- Liu, X.; Wang, A.; Zhang, T.; Su, D.-S.; Mou, C.-Y. Au–Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: Effects of Au/Cu ratios. Catal. Today 2011, 160, 103–108. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, L.; Yin, Y.; Jin, M. Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J. Mater. Chem. A 2014, 2, 902–906. [Google Scholar] [CrossRef]
- Buchal, C.; Mueller, R.M.; Pobell, F.; Kubota, M.; Folle, H.R. Superconductivity investigations of Au-In alloys and of Au at ultralow temperatures. Solid State Commun. 1982, 42, 43–47. [Google Scholar] [CrossRef]
- Baranov, D.S.; Vlaic, S.; Baptista, J.; Cofler, E.; Stolyarov, V.S.; Roditchev, D.; Pons, S. Gold Atoms Promote Macroscopic Superconductivity in an Atomic Monolayer of Pb on Si(111). Nano Lett. 2022, 22, 652–657. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, H.; Li, C.K.; Zhang, X.; Liu, J.; Zhang, Y.; Luo, J.; Wang, Z.; Wang, Y.; Ling, L.; et al. Superconductivity in topologically nontrivial material Au2Pb. NPJ Quantum Mater. 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Peng, F.; Bergara, A.; Ma, Y. Gold as a 6p-Element in Dense Lithium Aurides. J. Am. Chem. Soc. 2016, 138, 4046–4052. [Google Scholar] [CrossRef]
- Koenig, C.; Christensen, N.E.; Kollar, J. Electronic properties of alkali-metal—Gold compounds. Phys. Rev. B 1984, 29, 6481. [Google Scholar] [CrossRef]
- Miao, M.; Brgoch, J.; Krishnapriyan, A.; Goldman, A.; Kurzman, J.A.; Seshadri, R. On the Stereochemical Inertness of the Auride Lone Pair: Ab Initio Studies of AAu (A = K, Rb, Cs). Inorg. Chem. 2013, 52, 8183–8189. [Google Scholar] [CrossRef]
- Aycibin, M.; Dogan, E.K.; Gulebaglan, S.E.; Secuk, M.N.; Erdinc, B.; Akkus, H. Physical properties of RbAu compound. Comput. Condens. Matter 2014, 1, 32–37. [Google Scholar] [CrossRef]
- Spicer, W.E.; Sommer, A.H.; White, J.G. Studies of the Semiconducting Properties of the Compound CsAu. Phys. Rev. 1959, 115, 57. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Fu, Y.; Wang, Y.; Bergara, A.; Yang, G. Ba with Unusual Oxidation States in Ba Chalcogenides under Pressure. J. Phys. Chem. Lett. 2021, 12, 4203–4210. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wang, Y.; Yang, G.; Ma, Y. Barium in High Oxidation States in Pressure-Stabilized Barium Fluorides. J. Phys. Chem. C 2018, 122, 12448–12453. [Google Scholar] [CrossRef]
- Rahm, M.; Cammi, R.; Ashcroft, N.W.; Hoffmann, R. Squeezing All Elements in the Periodic Table: Electron Configuration and Electronegativity of the Atoms under Compression. J. Am. Chem. Soc. 2019, 141, 10253–10271. [Google Scholar] [CrossRef] [PubMed]
- Fornasini, M. New Alkaline Earth Equiatomic Phases: SrAu and BaAu. J. Solid State Chem. 1985, 59, 60–64. [Google Scholar] [CrossRef]
- Li, B.; Liu, H.; Liu, G.; Chen, K. First-principles study on high-pressure phases and compression properties of gold-bearing intermetallic compounds. J. Phys. Condens. Matter 2022, 34, 464001–464008. [Google Scholar] [CrossRef] [PubMed]
- Munro, J.M.; Latimer, K.; Horton, M.K.; Dwaraknath, S.; Persson, K.A. An improved symmetry-based approach to reciprocal space path selection in band structure calculations. NPJ Comput. Mater. 2020, 6, 1–6. [Google Scholar] [CrossRef]
- Zurek, E.; Hoffmann, R.; Ashcroft, N.W.; Oganov, A.R.; Lyakhov, A.O. A little bit of lithium does a lot for hydrogen. Proc. Natl. Acad. Sci. USA 2009, 106, 17640–17643. [Google Scholar] [CrossRef] [PubMed]
- Mcmillan, P.F. Chemistry at high pressure. Chem. Soc. Rev. 2006, 35, 855–857. [Google Scholar] [CrossRef]
- Peng, F.; Miao, M.; Wang, H.; Li, Q.; Ma, Y. Predicted lithium-boron compounds under high pressure. J. Am. Chem. Soc. 2012, 134, 18599–18605. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Wang, X.-l.; Brgoch, J.; Spera, F.; Jackson, M.G.; Kresse, G.; Lin, H.-q. Anionic Chemistry of Noble Gases: Formation of Mg–NG (NG = Xe, Kr, Ar) Compounds under Pressure. J. Am. Chem. Soc. 2015, 137, 14122–14128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Oganov, A.R.; Goncharov, A.F.; Zhu, Q.; Boulfelfel, S.E.; Lyakhov, A.O.; Stavrou, E.; Somayazulu, M.; Prakapenka, V.B.; Konôpková, Z. Unexpected Stable Stoichiometries of Sodium Chlorides. Science 2013, 342, 1502–1505. [Google Scholar] [CrossRef] [PubMed]
- Miao, M. Caesium in high oxidation states and as a p-block element. Nat. Chem. 2013, 5, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, H.; Pickard, C.J.; Zou, G.; Ma, Y. Reactions of xenon with iron and nickel are predicted in the Earth’s inner core. Nat. Chem. 2014, 6, 644–648. [Google Scholar] [CrossRef]
- Ma, Y.; Eremets, M.; Oganov, A.R.; Xie, Y.; Trojan, I.; Medvedev, S.; Lyakhov, A.O.; Valle, M.; Prakapenka, V. Transparent dense sodium. Nature 2009, 458, 182–185. [Google Scholar] [CrossRef]
- Liu, G.; Liu, H.; Feng, X.; Redfern, S.A.T. High-pressure phase transitions of nitinol NiTi to a semiconductor with an unusual topological structure. Phys. Rev. B 2018, 97, 140104. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Kresse, G.G.; Furthmüller, J.J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-interaction correction density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef]
- Peters, K.; Wartanessian, S.; Sax, A.F.; Edgecombe, K.E.; Becke, A.D.; Flad, J.; Nesper, R.; Preuss, H.; Werner, H.J.; Knowles, P.J.; et al. Electron localization in solid-state structures of elements—Diamond structure. Angew. Chem. Int. Ed. Engl. 1992, 31, 187–188. [Google Scholar]
- Beek, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular-systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Chaput, L.; Togo, A.; Tanaka, I.; Hug, G. Phonon-phonon interactions in transition metals. Phys. Rev. B 2011, 84, 094302. [Google Scholar] [CrossRef]
- Giannozzi, P.; Gironcoli, S.D.; Pavone, P.; Baroni, S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 1991, 43, 7231. [Google Scholar] [CrossRef]
- Gonze, X.; Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 1997, 55, 10355. [Google Scholar] [CrossRef]
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). JOM 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 2015, 1, 1–15. [Google Scholar] [CrossRef]
Compound | Pressure (GPa) | Space Group | Lattice Parameter (Å) | Atomic Coordinate (Fractional) | |||
---|---|---|---|---|---|---|---|
Atoms | x | y | z | ||||
BaAu | 10 | Pnma | a = 7.922 | Ba | 0.317 | 0.750 | 0.136 |
b = 4.705 | |||||||
c = 6.087 | Au | 0.040 | 0.250 | 0.136 | |||
α = β = γ = 90 | |||||||
BaAu | 25 | Fd-3m | a = b = c = 7.034 α = β = γ = 90 | Ba | 0.250 | 0.250 | 0.250 |
Au | 0.750 | 0.750 | 0.750 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Wang, J.; Sun, S.; Liu, H. Crystal Structures and Electronic Properties of BaAu Compound under High Pressure. Materials 2022, 15, 7381. https://doi.org/10.3390/ma15207381
Li B, Wang J, Sun S, Liu H. Crystal Structures and Electronic Properties of BaAu Compound under High Pressure. Materials. 2022; 15(20):7381. https://doi.org/10.3390/ma15207381
Chicago/Turabian StyleLi, Bingtan, Jianyun Wang, Shuai Sun, and Hanyu Liu. 2022. "Crystal Structures and Electronic Properties of BaAu Compound under High Pressure" Materials 15, no. 20: 7381. https://doi.org/10.3390/ma15207381
APA StyleLi, B., Wang, J., Sun, S., & Liu, H. (2022). Crystal Structures and Electronic Properties of BaAu Compound under High Pressure. Materials, 15(20), 7381. https://doi.org/10.3390/ma15207381