Investigation of Nano-Scale Segregation in Nanostructured Ferritic Alloy 14YWT after Heavy Ion Irradiation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of the Grain Boundary in the ODS Steels Using APT
Chemical Composition (at%) | |||||||
---|---|---|---|---|---|---|---|
Fe | Cr | W | O | Ti | Y | C | |
Unirradiated | |||||||
Bulk | 83.93 ± 1.35 | 14.71 ± 0.20 | 0.58 | 0.37 | 0.19 | 0.09 | 0.06 |
GB (Δ) | 72.35 ± 2.93 (−11.58) | 22.80 ± 1.45 (8.09) | 1.02 ± 0.45 (0.44) | 1.99 ± 1.12 (1.62) | 1.23 ± 0.83 (1.04) | 0.46 ± 0.33 (0.37) | 0.14 ± 0.11 (0.08) |
P1 (Δ) | 75.40 ± 5.99 (−8.53) | 17.56 ± 1.23 (2.85) | 0.95 ± 0.01 (0.37) | 2.40 ± 0.07 (2.03) | 1.81 ± 0.04 (1.62) | 0.82 ± 0.0 (0.73) | 0.10 (0.04) |
P2 (Δ) | 69.21 ± 5.44 (−14.72) | 23.53 ± 1.70 (8.82) | 1.13 ± 0.02 (0.55) | 2.56 ± 0.07 (2.19) | 1.83 ± 0.04 (1.64) | 0.70 ± 0.01 (0.61) | 0.13 (0.07) |
P3 (Δ) | 77.41 ± 6.76 (−6.52) | 19.89 ± 1.66 (5.18) | 1.22 ± 0.03 (0.64) | 0.42 ± 0.01 (0.05) | 0.14 (-0.05) | 0.16 (0.07) | 0.22 (0.16) |
After irradiation | |||||||
Bulk | 83.36 ± 1.35 | 15.1 ± 0.23 | 0.58 | 0.39 | 0.13 | 0.07 | 0.06 |
GB (Δ) | 76.13 ± 1.76 (−7.23) | 20.01 ± 1.03 (4.91) | 1.42 ± 0.54 (0.84) | 0.58 ± 0.22 (0.19) | 0.47 ± 0.15 (0.34) | 0.13 ± 0.11 (0.06) | 1.22 ± 0.39 (1.16) |
P1 (Δ) | 74.90 ± 5.80 (−8.46) | 19.27 ± 1.36 (4.17) | 0.64 ± 0.01 (0.06) | 2.66 ± 0.08 (2.27) | 1.74 ± 0.04 (1.61) | 0.69 ± 0.01 (0.62) | 0.09 (0.03) |
P2 (Δ) | 69.50 ± 5.02 (−13.86) | 21.96 ± 1.42 (6.86) | 0.67 ± 0.01 (0.09) | 3.63 ± 0.10 (3.24) | 2.73 ± 0.07 (2.6) | 1.07 ± 0.02 (1.00) | 0.43 (0.37) |
P3 (Δ) | 79.13 ± 6.78 (−4.23) | 17.86 ± 1.44 (2.76) | 1.63 ± 0.04 (1.05) | 0.16 (-0.23) | 0.19 (0.06) | 0.16 (0.09) | 0.86 (0.8) |
3.2. The Relationship of Nano Oxide Particles and Cr Segregation in the ODS Steel
3.3. Irradiation Induced Segregation in the 14YWT
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Busby, J.T. Structuralmaterials for fission & fusion energy. Mater. Today 2009, 12, 12–19. [Google Scholar]
- Okuda, T.; Fujiwara, M. Dispersion behaviour of oxide particles in mechanically alloyed ODS steel. J. Mater. Sci. Lett. 1995, 14, 1600–1603. [Google Scholar] [CrossRef]
- Ukai, S.; Fujiwara, M. Perspective of ODS alloys application in nuclear environments. J. Nucl. Mater. 2002, 749, 307–311. [Google Scholar] [CrossRef]
- Odette, G.R.; Alinger, M.J.; Wirth, B.D. Recent Developments in Irradiation-Resistant Steels. Annu. Rev. Mater. Res. 2008, 38, 471–503. [Google Scholar] [CrossRef]
- Wu, Y.; Haney, E.M.; Cunningham, N.J.; Odette, G.R. Transmission electron microscopy characterization of the nanofeatures in nanostructured ferritic alloy MA957. Acta Mater. 2012, 60, 3456–3468. [Google Scholar] [CrossRef]
- Miller, M.K.; Russell, K.F.; Hoelzer, D.T. Characterization of precipitates in MA/ODS ferritic alloys. J. Nucl. Mater. 2006, 351, 261–268. [Google Scholar] [CrossRef]
- Eiselt, C.C.; Klimenkov, M.; Lindau, R.; Möslang, A. Characteristic results and prospects of the 13Cr–1W–0.3Ti–0.3Y2O3 ODS steel. J. Nucl. Mater. 2009, 386–388, 525–528. [Google Scholar] [CrossRef]
- Certain, A.; Kuchibhatla, S.; Shutthanandan, V.; Hoelzer, D.T.; Allen, T.R. Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J. Nucl. Mater. 2013, 434, 311–321. [Google Scholar] [CrossRef]
- Akasaka, N.; Yamashita, S.; Yoshitake, T.; Ukai, S.; Kimura, A. Microstructural changes of neutron irradiated ODS ferritic and martensitic steels. J. Nucl. Mater. 2004, 329–333, 1053–1056. [Google Scholar] [CrossRef]
- Klimenkov, M.; Lindau, R.; Jäntsch, U.; Möslang, A. Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel. J. Nucl. Mater. 2017, 493, 426–435. [Google Scholar] [CrossRef]
- Wang, J.; Toloczko, M.B.; Voyevodin, V.N.; Bryk, V.V.; Borodin, O.V.; Mel’nychenko, V.V.; Kalchenko, A.S.; Garner, F.A.; Shao, L. Atom Probe Tomography Characterization of High-Dose Ion Irradiated MA957. J. Nucl. Mater. 2020, 545, 152528. [Google Scholar] [CrossRef]
- Yu, H.Q.; Wang, S.L.; Zhang, Y.F.; Liu, Q.; Diao, S.Z.; Liu, P.P.; Oono, N.H.; Ukai, S.; Wan, F.R.; Ohnuki, S.; et al. Response of nanoclusters to heavy-ion irradiation in an Fe-12Cr ODS steel. Fusion Eng. Des. 2021, 172, 112759. [Google Scholar] [CrossRef]
- Williams, C.A.; Hyde, J.M.; Smith, G.D.W.; Marquis, E.A. Effects of heavy-ion irradiation on solute segregation to dislocations in oxide-dispersion-strengthened Eurofer 97 steel. J. Nucl. Mater. 2011, 412, 100–105. [Google Scholar] [CrossRef]
- Marquis, E.A.; Lozano-Perez, S.; de Castro, V. Effects of heavy-ion irradiation on the grain boundary chemistry of an oxide-dispersion strengthened Fe-12 wt.% Cr alloy. J. Nucl. Mater. 2011, 417, 257–261. [Google Scholar] [CrossRef]
- Rong, H.; Smith, G.D.W.; Marquis, E.A. Atom probe study of radiation induced grain boundary segregation/depletion in a Fe-12%Cr alloy. Prog. Nucl. Energy 2012, 57, 14–19. [Google Scholar]
- Auger, M.A.; Hoelzer, D.T.; Field, K.G.; Moody, M.P. Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy. J. Nucl. Mater. 2020, 528, 151852. [Google Scholar] [CrossRef]
- Hoelzer, D.T.; Bentley, J.; Sokolov, M.A.; Miller, M.K.; Odette, G.R.; Alinger, M.J. Influence of particle dispersions on the high-temperature strength of ferritic alloys. J. Nucl. Mater. 2007, 367–370, 166–172. [Google Scholar] [CrossRef]
- Byun, T.S.; Kim, J.H.; Yoon, J.H.; Hoelzer, D.T. High temperature fracture characteristics of a nanostructured ferritic alloy (NFA). J. Nucl. Mater. 2010, 407, 78–82. [Google Scholar] [CrossRef]
- Stoller, R.E.; Toloczko, M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 310, 75–80. [Google Scholar] [CrossRef]
- Hellman, O.C.; Vandenbroucke, J.A.; Rusing, J.; Isheim, D.; Seidman, D.N. Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram. Microsc. Microanal. 2000, 6, 437–444. [Google Scholar] [CrossRef]
- Miller, M.K.; Kenik, E.A.; Russell, K.F.; Heatherly, L.; Maziasz, D.T.H.P.J. Atom probe tomography of nanoscale particles in ODS ferritic alloys. Mater. Sci. Eng. A 2003, 353, 140–145. [Google Scholar] [CrossRef]
- Miller, M.K.; Hoelzer, D.T. Effect of neutron irradiation on nanoclusters in MA957 ferritic alloys. J. Nucl. Mater. 2011, 418, 307–310. [Google Scholar] [CrossRef]
- Williams, C.A.; Smith, G.D.W.; Marquis, E.A. The effect of Ti on the coarsening behavior of oxygen-rich nanoparticles in oxide-dispersion-strengthened steels after annealing at 1200 C. Scr. Mater. 2012, 67, 108–111. [Google Scholar] [CrossRef]
- Hirata, A.; Fujita, T.; Liu, C.T.; Chen, M.W. Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM. Acta Mater. 2012, 60, 5686–5696. [Google Scholar] [CrossRef]
- de Castro, V.; Lozano-Perez, S.; Marquis, E.A.; Auger, M.A.; Leguey, T.; Pareja, R. Analytical characterisation of oxide dispersion strengthened steels for fusion reactors. Mater. Sci. Technol. 2011, 27, 719–723. [Google Scholar] [CrossRef]
- Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Chandra, S.; Sundar, C.S.; Raj, B. The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: An ab initio study. J. Nucl. Mater. 2010, 403, 113–116. [Google Scholar] [CrossRef]
- Marquis, E.A. Core/shell structures of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe–Cr alloys. Appl. Phys. Lett. 2008, 93, 181904. [Google Scholar] [CrossRef]
- Was, G.S.; Wharry, J.P.; Frisbie, B.; Wirth, B.D.; Morgan, D.; Tucker, J.D.; Allen, T.R. Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys. J. Nucl. Mater. 2011, 411, 41–50. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Han, W.; Wan, F.; He, J. Investigation of Nano-Scale Segregation in Nanostructured Ferritic Alloy 14YWT after Heavy Ion Irradiation. Materials 2022, 15, 7257. https://doi.org/10.3390/ma15207257
Cai J, Han W, Wan F, He J. Investigation of Nano-Scale Segregation in Nanostructured Ferritic Alloy 14YWT after Heavy Ion Irradiation. Materials. 2022; 15(20):7257. https://doi.org/10.3390/ma15207257
Chicago/Turabian StyleCai, Junfeng, Wentuo Han, Farong Wan, and Jianchao He. 2022. "Investigation of Nano-Scale Segregation in Nanostructured Ferritic Alloy 14YWT after Heavy Ion Irradiation" Materials 15, no. 20: 7257. https://doi.org/10.3390/ma15207257
APA StyleCai, J., Han, W., Wan, F., & He, J. (2022). Investigation of Nano-Scale Segregation in Nanostructured Ferritic Alloy 14YWT after Heavy Ion Irradiation. Materials, 15(20), 7257. https://doi.org/10.3390/ma15207257