Fiber-Optic Vector-Magnetic-Field Sensor Based on Gold-Clad Bent Multimode Fiber and Magnetic Fluid Materials
Abstract
1. Introduction
2. Fabrication and Sensing Principle
3. Experimental Details and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zu, P.; Chan, C.C.; Lew, W.S.; Jin, Y.; Zhang, Y.; Liew, H.F.; Chen, L.H.; Wong, W.C.; Dong, X. Magneto-optical fiber sensor based on magnetic fluid. Opt. Lett. 2012, 37, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lv, R.; Li, H.; Wang, Q. Simulation and experimental measurement of magnetic fluid transmission characteristics subjected to the magnetic field. IEEE Trans. Magn. 2014, 50, 4600107. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, R.; Zhang, Y.; Wang, Q. Novel optical devices based on the transmission properties of magnetic fluid and their characteristics. Opt. Laser. Vol. 2012, 50, 1177–1184. [Google Scholar] [CrossRef]
- Zhang, C.; Pu, S.; Hao, Z.; Wang, B.; Yuan, M.; Zhang, Y. Magnetic field sensing based on whispering gallery mode with nanostructured magnetic fluid-infiltrated photonic crystal fiber. Nanomaterials 2022, 12, 862. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, S.; Li, Y.; Hao, Z.; Li, D.; Yan, S.; Yuan, M.; Zhang, C. Magnetic field and temperature dual-parameter sensor based on nonadiabatic tapered microfiber cascaded with FBG. IEEE Access 2022, 10, 15478–15486. [Google Scholar] [CrossRef]
- Deng, M.; Huang, C.; Liu, D.; Jin, W.; Zhu, T. All fiber magnetic field sensor with ferrofluid-filled tapered microstructured optical fiber interferometer. Opt. Express 2015, 23, 20668–20674. [Google Scholar] [CrossRef]
- Dong, S.; Pu, S.; Wang, H. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing. Opt. Express 2014, 22, 19108–19116. [Google Scholar] [CrossRef]
- Luo, L.; Pu, S.; Tang, J.; Zeng, X.; Lahoubi, M. Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid. Opt Express 2015, 23, 18133–18142. [Google Scholar] [CrossRef]
- Xia, J.; Wang, F.; Luo, H.; Wang, Q.; Xiong, S. A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure. Sensors 2016, 16, 620. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, R.; Ying, Y.; Wang, Q. Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid. Opt. Laser Technol. 2012, 44, 899–902. [Google Scholar] [CrossRef]
- Candiani, A.; Margulis, W.; Sterner, C.; Konstantaki, M.; Pissadakis, S. Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids. Opt. Lett. 2011, 36, 2548–2550. [Google Scholar] [CrossRef] [PubMed]
- Candiani, A.; Konstantaki, M.; Margulis, W.; Pissadakis, S. A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid. Opt. Express 2010, 18, 24654–24660. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, Y.; Han, Q.; Lv, X. Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid. IEEE Photonics J. 2014, 6, 5300307. [Google Scholar] [CrossRef]
- Fang, Y.L.; Huang, Y.H.; Kuo, C.Y.; Chiang, C.C. U-bend fiber optical sensor for magnetic field sensing. Opt. Quantum Electron. 2019, 51, 36. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Q.; Liu, T.; Lan, X.; Xiao, H. Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid. Opt. Lett. 2013, 38, 3999–4001. [Google Scholar] [CrossRef]
- Wang, H.; Pu, S.; Wang, N.; Dong, S.; Huang, J. Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding. Opt. Lett. 2013, 39, 3765–3768. [Google Scholar] [CrossRef]
- Mao, L.; Pu, S.; Su, D.; Wang, Z.; Zeng, X.; Lahoubi, M. Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid. J. Appl. Phys. 2016, 120, 093102. [Google Scholar] [CrossRef]
- Yuan, M.; Pu, S.; Li, D.; Li, Y.; Hao, Z.; Zhang, Y.; Zhang, C.; Yan, S. Extremely high sensitivity magnetic field sensing based on birefringence-induced dispersion turning point characteristics of microfiber coupler. Results Phys. 2021, 29, 104743. [Google Scholar] [CrossRef]
- Zu, P.; Chan, C.C.; Siang, L.W.; Jin, Y.; Zhang, Y.; Fen, L.H.; Chen, L.; Dong, X. Magneto-optic fiber Sagnac modulator based on magnetic fluids. Opt. Lett. 2011, 36, 1425–1427. [Google Scholar] [CrossRef]
- Lin, Q.; Xiao, Y.; Hu, Y.; Yan, F.; Hu, S.; Chen, Y.; Liu, G.; Chen, Y.; Luo, Y.; Chen, Z. Half-side gold-coated hetero-core fiber for highly sensitive measurement of a vector magnetic field. Opt. Lett. 2020, 45, 4746–4749. [Google Scholar] [CrossRef]
- Yin, J.; Yan, P.; Chen, H.; Yu, L.; Jiang, J.; Zhang, M.; Ruan, S. All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles. Appl. Phys. Lett. 2017, 110, 5187. [Google Scholar] [CrossRef]
- Candiani, A.; Konstantaki, M.; Margulis, W.; Pissadakis, S. Optofluidic magnetometer developed in a microstructured optical fiber. Opt. Lett. 2012, 37, 4467–4469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Peng, W. Bent fiber interferometer. J. Lightwave Technol. 2015, 33, 3351–3356. [Google Scholar] [CrossRef]
- Chiang, C.C.; Chao, J.C. Whispering gallery mode based optical fiber sensor for measuring concentration of salt solution. J. Nanomater. 2013, 2013, 1–4. [Google Scholar] [CrossRef]
- Nam, S.H.; Yin, S. High-temperature sensing using whispering gallery mode resonance in bent optical fibers. IEEE Photonics Technol. Lett. 2005, 17, 2391–2393. [Google Scholar] [CrossRef]
- He, J.; Liao, C.; Yang, K.; Liu, S.; Yin, G.; Sun, B.; Zhou, J.; Zhao, J.; Wang, Y. High-sensitivity temperature sensor based on a coated single-mode fiber loop. J. Lightwave Technol. 2015, 33, 4019–4026. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Based Sensors; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical chemical sensors. Chem. Rev. 2015, 108, 400–422. [Google Scholar] [CrossRef]
- Homola, J. On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens. Actuators B 1997, 41, 207–211. [Google Scholar] [CrossRef]
- Slavík, R.; Homola, J.; Ctyroký, J. Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators B 1999, 54, 74–79. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Han, Q.; Liu, F.; Yao, Y. Sensor based on macrobent fiber Bragg grating structure for simultaneous measurement of refractive index and temperature. Appl. Opt. 2016, 55, 791–795. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.; Wang, L.; Zhou, Q.; Sieg, J.; Zhao, D.; Wang, B.; Yan, T.; Wang, S. Fiber refractive index sensor based on dual polarized Mach-Zehnder interference caused by a single-mode fiber loop. Appl. Opt. 2016, 55, 63–69. [Google Scholar] [CrossRef]
- Li, Y.; Pu, S.; Hao, Z.; Yan, S.; Zhang, Y.; Lahoubi, M. Vector magnetic field sensor based on U-bent single-mode fiber and magnetic fluid. Opt. Express 2021, 29, 5236–5246. [Google Scholar] [CrossRef] [PubMed]
- Dyshlyuk, A.V.; Vitrik, O.B.; Kulchin, Y.N.; Mitsai, E.V.; Cherepakhin, A.B.; Branger, C.; Brisset, H.; Iordache, T.V.; Sarbu, A. Numerical and experimental investigation of surface plasmon resonance excitation using whispering gallery modes in bent metal-clad single-mode optical fiber. J. Lightwave Technol. 2017, 35, 5425–5431. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, P.; Wang, Y.; Liu, Z.; Wei, Y.; Zhu, Z.; Zhao, E.; Yang, J.; Yuan, L. Cascaded distributed multichannel fiber SPR sensor based on gold film thickness adjustment approach. Sens. Actuators A 2017, 267, 526–531. [Google Scholar] [CrossRef]
- Haddouche, I.; Cherbi, L.; Ferhat, M.L. Analytical modelization of a fiber optic-based surface plasmon resonance sensor. Opt. Commun. 2017, 402, 618–623. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, T.; Zhang, X.; Xu, J.; Xie, W.; Nie, M.; Wu, Q.; Guan, B.; Albert, J. Plasmonic fiber-optic vector magnetometer. Appl. Phys. Lett. 2016, 108, 101105. [Google Scholar] [CrossRef]
- Lv, R.; Zhao, Y.; Li, H.; Hu, H.F. Theoretical analysis and experimental measurement of birefringence properties in magnetic fluid subjected to magnetic field. IEEE Trans. Magn. 2015, 51, 1–5. [Google Scholar] [CrossRef]
- Nabighian, M.N.; Grauch, V.; Hansen, R.O.; Lafehr, T.R.; Pearson, W.C.; Phillips, J.D. The historical development of the magnetic method in exploration. Geophysics 2005, 70, 33–61. [Google Scholar] [CrossRef]
- Savukov, I.; Karaulanov, T. Magnetic-resonance imaging of the human brain with an atomic magnetometer. Appl. Phys. Lett. 2013, 103, 115–120. [Google Scholar] [CrossRef]
- Pu, S.; Chen, X.; Chen, Y.; Liao, W.; Chen, L.; Xia, Y. Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face. Appl. Phys. Lett. 2015, 86, 611. [Google Scholar] [CrossRef]
- Lu, T.; Sun, Y.; Moreno, Y.; Yan, Z.; Wang, C.; Sun, Q.; Wan, H.; Liu, D.; Zhang, L. Vector magnetic field sensor based on excessively tilted fiber grating assistant with magnetic fluids. In Proceedings of the 2018 Asia Communications and Photonics Conference, Hangzhou, China, 26–29 October 2018. [Google Scholar]
- Cui, J.; Qi, D.; Tian, H.; Li, H. Vector optical fiber magnetometer based on capillaries filled with magnetic fluid. Appl. Opt. 2019, 58, 2754. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pu, S.; Zhao, Y.; Zhang, R.; Jia, Z.; Yao, J.; Hao, Z.; Han, Z.; Li, D.; Li, X. All-fiber-optic vector magnetic field sensor based on side-polished fiber and magnetic fluid. Opt. Express 2019, 27, 35182–35188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, Y.; Zhang, X.; Chen, H.; Guo, Z.; Wang, W. Magnetic field vector sensor based on a cascaded structure of core-offset Fabry–Perot interferometer and a magnetic fluid infiltrated glass capillary. J. Opt. Soc. Am. B 2021, 38, 102902–102906. [Google Scholar] [CrossRef]
- Jiang, Z.; Dong, J.; Hu, S.; Zhang, Y.; Chen, Y.; Luo, Y.; Zhu, W.; Qiu, W.; Lu, H.; Guan, H.; et al. High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid. Opt. Lett. 2018, 43, 4743–4746. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Pu, S.; Wang, J.; Liu, W.; Zhang, C.; Fan, Y.; Lahoubi, M. Dual-channel temperature-compensated vector magnetic field sensor based on lab-on-a-fiber-tip. Opt. Express 2022, 30, 25208–25218. [Google Scholar] [CrossRef] [PubMed]
Sensing Structure | Fabrication Method | Detecting Range | Maximum Sensitivity | Reference |
---|---|---|---|---|
STS + lateral-offset | Offset splicing | 0–16 mT | 222.0 pm/mT | [21] |
Tilted fiber grating | UV inscribed | 0–15 mT | 260 pm/mT | [42] |
SMF fused with capillary | Tapered | 0–110 mT | 112 pm/mT | [43] |
SPF-SNS | Side-polished | 0–30 mT | 2370 pm/mT | [44] |
TFBG + gold film | Gold plating | 0–18 mT | 1800 pm/mT | [37] |
FP + lateral-offset | Offset splicing | 0–9 mT | 4.63 pm/mT | [45] |
D-shape fiber + gold film | Side polished + gold plating | 0–23 mT | 598.7 pm/Oe (5987 pm/mT) | [46] |
Wedge-shape + gold film | Tip polished + gold plating | 0–22 mT | 1100 pm/mT | [47] |
Bent MMF + gold film | Bent + gold plating | 0–8 mT | 9749 pm/mT | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Pu, S.; Hao, Z.; Wang, J.; Fan, Y.; Zhang, C.; Wang, J. Fiber-Optic Vector-Magnetic-Field Sensor Based on Gold-Clad Bent Multimode Fiber and Magnetic Fluid Materials. Materials 2022, 15, 7208. https://doi.org/10.3390/ma15207208
Liu W, Pu S, Hao Z, Wang J, Fan Y, Zhang C, Wang J. Fiber-Optic Vector-Magnetic-Field Sensor Based on Gold-Clad Bent Multimode Fiber and Magnetic Fluid Materials. Materials. 2022; 15(20):7208. https://doi.org/10.3390/ma15207208
Chicago/Turabian StyleLiu, Weinan, Shengli Pu, Zijian Hao, Jia Wang, Yuanyuan Fan, Chencheng Zhang, and Jingyue Wang. 2022. "Fiber-Optic Vector-Magnetic-Field Sensor Based on Gold-Clad Bent Multimode Fiber and Magnetic Fluid Materials" Materials 15, no. 20: 7208. https://doi.org/10.3390/ma15207208
APA StyleLiu, W., Pu, S., Hao, Z., Wang, J., Fan, Y., Zhang, C., & Wang, J. (2022). Fiber-Optic Vector-Magnetic-Field Sensor Based on Gold-Clad Bent Multimode Fiber and Magnetic Fluid Materials. Materials, 15(20), 7208. https://doi.org/10.3390/ma15207208