An Overview Regarding Microbial Aspects of Production and Applications of Bacterial Cellulose
Abstract
:1. Introduction
2. Bacterial Cellulose—Structure and Characteristics
3. Bacterial Cellulose—Production
4. Biomedical Applications of Bacterial Cellulose
4.1. Dermal Applications
4.2. Ophthalmology
4.3. Tissue Engineering
4.4. Blood Vessel Replacement
4.5. Drug Delivery
5. Future Advancements
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Faezah, E.; Siti, M.T.; Norliza, A.R. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Procedia 2014, 2, 113–119. [Google Scholar]
- Wang, J.; Tavakoli, J.; Tang, Y. Bacterial cellulose production, properties, and applications with different culture methods—A review. Carbohydr. Polym. 2019, 219, 63–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallegos, A.M.A.; Carrera, S.H.; Parra, R.; Keshavarz, T.; Iqbal, H.M.N. Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products—A Review. Bioresources 2016, 11, 515. [Google Scholar] [CrossRef]
- Raquel, P.; Catarina, R.L.; Pedro, L.A.; Rita, G.S. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb. Biotechnol. 2019, 12, 586–610. [Google Scholar] [CrossRef]
- Stanislaw, B.; Alina, K.; Marianna, T.; Halina, K. Bacterial Celluose. Biopolym. Online 2005, 5, 37–90. [Google Scholar] [CrossRef]
- Selestina, G.; Janja, T. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. Nanomaterials 2019, 9, 1352. [Google Scholar] [CrossRef] [Green Version]
- Andrea, F.S.C. Production of Bacterial Cellulose by Gluconoacetbacter hansenii using corn steep liquor as nutrient sources. Front. Microbiol. 2017, 8, 2027. [Google Scholar] [CrossRef]
- Victor, R.; Elena, L. Cost effective production of BC using acidic food industry. Braz. J. Microbiol. 2018, 49 (Suppl. 1), 151–159. [Google Scholar] [CrossRef]
- Zhao, H. Production of bacterial cellulose using polysaccharide fermentation wastewater as inexpensive nutrient sources. Biotechnol. Biotechnol. Equip. 2018, 32, 350–356. [Google Scholar] [CrossRef] [Green Version]
- Raghunathan, D. Production of microbial cellulose from the new bacterial strain isolated from temple wash waters. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 275–290. [Google Scholar]
- Mona, M.; Amin, B.M. Production and status of Bacterial Cellulose in Biomedical Engineering. Nanomaterials 2017, 7, 257. [Google Scholar] [CrossRef] [Green Version]
- George, D. Winter, Formation of the Scub and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 1962, 193, 293–294. [Google Scholar] [CrossRef]
- Wojciech, K.C.; David, J.Y.; Marek, K.; Brown, R.M., Jr. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 2007, 8, 1–12. [Google Scholar] [CrossRef]
- Fu, L.; Zhou, P.; Zhang, S.; Yang, G. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2995–3000. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, Y.; Li, C.; Wu, Z.; Zhuo, Q.; Huang, X.; Qiu, G.; Zhou, P.; Yang, G. Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J. Mater. Chem. 2012, 22, 12349–12357. [Google Scholar] [CrossRef]
- Irene, A.-S.; Uwe, B.; Anna, L. Anna Roig, and Dana Kralisch, Opportunities of Bacterial Cellulose to treat epithelial tissues. Curr. Drug Targets 2019, 20, 808–822. [Google Scholar] [CrossRef]
- Fontana, J.D.; Souza, A.M.D.; Fontana, C.K.; Torriani, I.L.; Moreschi, J.C.; Gallotti, B.J. Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol. 1990, 24, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Politano, A.D.; Campbell, K.T.; Rosenberger, L.H.; Sawyer, R.G. Use of Silver in the Prevention and Treatment of Infections: Silver Review. Surg. Infect. 2013, 14, 8–20. [Google Scholar] [CrossRef]
- Cho, K.-H.; Park, J.-E.; Osaka, T.; Park, S.-G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 2005, 51, 956–960. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Bottan, S.; Robotti, F.; Jayathissa, P.; Hegglin, A.; Bahamonde, N.; Heredia-Guerrero, J.A.; Bayer, I.S. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 2014, 9, 206–219. [Google Scholar] [CrossRef]
- Wu, H.; Williams, G.R.; Wu, J.; Wu, J.; Niu, S.; Li, H. Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydr. Polym. 2018, 180, 304–313. [Google Scholar] [CrossRef]
- Wu, C.N.; Fuh, S.C.; Lin, S.P.; Lin, Y.Y.; Cheng, K.C. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules 2018, 19, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Khan, R.; Ul-Islam, M.; Khan, T.; Wahid, F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr. Polym. 2017, 164, 214–221. [Google Scholar] [CrossRef]
- Khalid, A.; Ullah, H.; Ul-Islam, M.; Khan, R.; Khan, S. Bacterial cellulose-TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv. 2017, 7, 47662–47668. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.-H.; Yang, Y.-N.; Ho, Y.-C.; Tsai, M.-L.; Mi, F.-L. Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/ bacterial cellulose nanofiber composite films. Carbohydr. Polym. 2018, 180, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, Y.; Dewaldt, M.; Moritz, S.; Nitzsche, R.; Kralisch, D.; Fischer, D. Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur. J. Pharm. Biopharm. 2017, 12, 164–176. [Google Scholar] [CrossRef]
- Fontes, M.; Meneguin, A.B.; Tercjak, A.; Gutierrez, J.; Barud, H.S. Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr. Polym. 2018, 179, 126–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radka, H.; Jakub, H.; Jakub, S.; Evgeny, K.; Jiri, M.; Olga, J. Embedding of bacterial cellulose nanofibers within PHEMA hydrogel matrices: Tunable Stiffness composites with potential for biomedical applications. J. Nanomater. 2018, 2018, 5217095. [Google Scholar]
- Fürsatz, F.M.; Skog, M.; Sivlér, P.; Palm, E.; Aronsson, C.; Skallberg, A. Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide Œµ-poly-L-Lysine. Biomed. Mater. 2018, 13, 25014. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Zhang, Y.; Wan, Y. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater. Sci. Eng. C 2010, 30, 214–218. [Google Scholar] [CrossRef]
- Jia, Y.; Zhu, W.; Zheng, M.; Huo, M.; Zhong, C. Bacterial cellulose/hyaluronic acid composite hydrogels with improved viscoelastic properties and good thermodynamic stability. Plast. Rubber Compos. 2018, 47, 165–175. [Google Scholar] [CrossRef]
- Gonçalves, S.; Rodrigues, I.P.; Padrão, J.; Silva, J.P.; Sencadas, V.; Lanceros-Mendez, S.; Girão, H.; Gama, F.M.; Dourado, F.; Rodrigues, L.R. Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids Surf. B Biointerfaces 2016, 139, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, X.G.; Yang, J.X.; Feng, C.; Li, Z.; Chen, S.Y.; Xie, M.K. Bacterial cellulose-based biomimetic nanofibrous scaffold with muscle cells for hollow organ tissue engineering. ACS Biomater. Sci. Eng. 2016, 2, 19–29. [Google Scholar] [CrossRef]
- Wu, Z.; Kong, B.; Liu, R.; Sun, W.; Mi, S. Engineering of corneal tissue through an aligned pva/collagen composite nanofibrous electrospun scaffold. Nanomaterials 2018, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Lace, R.; Celia, M.-D.; Williams, R. Biomaterials for ocular reconstruction. J. Mater. Sci. 2015, 50, 1523–1534. [Google Scholar] [CrossRef]
- Williams, R.; Lace, R.; Kennedy, S.; Doherty, K.; Levis, H. Biomaterials for regenerative medicine approaches for the anterior segment of the eye. Adv. Healthc. Mater. 2018, 7, 1701328. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Wahid, F.; Santos, H.A.; Khan, T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr. Polym. 2016, 150, 330–352. [Google Scholar] [CrossRef] [PubMed]
- Dugan, J.M.; Gough, J.E.; Eichhorn, S.J. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 2013, 8, 287–298. [Google Scholar] [CrossRef]
- Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D.L.; Brittberg, M.; Gatenholm, P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 2005, 26, 419–431. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, J.; Yang, G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 2013, 92, 1432–1442. [Google Scholar] [CrossRef]
- Millon, L.E.; Oates, C.J.; Wan, W. Compression properties of polyvinyl alcohol-bacterial cellulose nanocomposite. J. Biomed. Mater. Res. Part B 2009, 90, 922–929. [Google Scholar] [CrossRef]
- Zang, S.; Zhang, R.; Chen, H.; Lu, Y.; Zhou, J.; Chang, X.; Qiu, G.; Wu, Z.; Yang, G. Investigation on artificial blood vessels prepared from bacterial cellulose. Mater. Sci. Eng. C. 2015, 46, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Saxena, I.M.; Brown, R.M. Bacterial NanoCellulose: A Sophisticated Multifunctional Material; Biosynthesis of Bacterial Cellulose; CRC Press: Boca Raton, FL, USA, 2012; pp. 1–18. [Google Scholar]
- Zhu, W.; Li, W.; He, Y.; Duan, T. In-Situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl. Surf. Sci. 2015, 338, 22–26. [Google Scholar] [CrossRef]
- Bckdahl, H.; Esguerra, M.; Delbro, D.; Risberg, B.; Gatenholm, P. Engineering microporosity in bacterial cellulose scaffolds. J. Tissue Eng. Regen. Med. 2008, 2, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Fink, H.; Faxlv, L.; Molnr, G.F.; Drotz, K.; Risberg, B.; Lindahl, T.L.; Sellborn, A. Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater. 2010, 6, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Wippermann, J.; Schumann, D.; Klemm, D.; Kosmehl, H.; Salehi-Gelani, S.; Wahlers, T. Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur. J. Vasc. Endovasc. Surg. 2009, 37, 592–596. [Google Scholar] [CrossRef] [Green Version]
- Trovatti, E.; Freire, C.S.R.; Pinto, P.C.; Almeida, I.F.; Costa, P.; Silvestre, A.J.D.; Neto, C.P.; Rosado, C. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: In Vitro diffusion studies. Int. J. Pharm. 2012, 435, 83–87. [Google Scholar] [CrossRef]
- Trovatti, E.; Silva, N.H.C.S.; Duarte, I.F.; Rosado, C.F.; Almeida, I.F.; Costa, P.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 2011, 12, 4162–4168. [Google Scholar] [CrossRef]
- Muller, A.; Ni, Z.; Hessler, N.; Wesarg, F.; Mller, F.A.; Kralisch, D.; Fischer, D. The biopolymer bacterial nanocellulose as drug delivery system: Investigation of drug loading and release using the model protein albumin. J. Pharm. Sci. 2013, 102, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Leppiniemi, J.; Lahtinen, P.; Paajanen, A.; Mahlberg, R.; Metsä-Kortelainen, S.; Pinormaa, T.; Pajari, H.; Vikholm-Lundin, I.; Pursula, P.; Blazevic, V. 3D-Printable Bioactivated Nanocellulose–Alginate Hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 21959–21970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rjwade, J.M.; Paknikar, K.M.; Kumbhar, J.V. Applications of bacterial cellulose and its composites in biomedi-cine. Appl. Microbiol. Biotechnol. 2015, 99, 2491–2511. [Google Scholar] [CrossRef] [PubMed]
- Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent advances and applications of bacteriall cellulose in Biomedicine. Polymers 2021, 13, 412. [Google Scholar] [CrossRef] [PubMed]
- Paunescu, C. Increasing endurance in physical effort by administration of inosine. Farmacia 2021, 69, 148–154. [Google Scholar] [CrossRef]
Material | Title of Paper | Results Obtained by BC Modification | References |
---|---|---|---|
BC with structured topography | Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB) | Improved cell alignment. Promotion of fibroblast infiltration and new collagen deposition in the wound bed. | [21] |
BCNC/RC | Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials | Biocompatible surgical sutures Increasing strength of BCNC/RC filaments. Enzymatic degradation possible. Degradation rate can be tuned by varying concentration of BCNCs in the yarn. Chitin can promote cell proliferation (in vivo). | [22] |
TOBCP/AgNP | TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing | Antimicrobial activity Ag+ release with a rate of 12.2%/day at 37 °C in 3 days biocompatible wound dressing. | [23] |
BC/ZnO | Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds | Antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Citrobacter freundii. Significant healing of 66% after 15 days related to day 0. | [24] |
BC/TiO2 | Bacterial cellulose-TiO2 nanocomposites promote healing and tissue regeneration in burn mice model | Antimicrobial activity against Escherichia coli (81.0 ± 0.4%) and Staphylococcus aureus (83.0 ± 0%). | [25] |
BC/SMN-Zein | Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films | Flavonoid silymarin (SMN) and zein loading through nanoparticle adsorbing onto BC nanofibers. Change of wettability and swelling. Antioxidant and antibacterial activity air-dried SMN-Zein/BC nanocomposite slow down the lipid oxidation. | [26] |
BC/Octenidin | Controlled extended octenidine release from a bacterial nanocellulose/poloxamer hybrid system | Long term-controlled release of octenidine up to one-week improved mechanical and antimicrobial properties. Ready-to-use system with poloxamer loaded BC for advanced treatment of infected wounds. Toxicity test performed with shell-less hen’s egg model. | [27] |
BC/CMC/MTX | Effect of in situ modification of bacterial cellulose with carboxy-methylcellulose on its nano/microstructure and methotrexate release properties | Impact of DS-CMC on methotrexate loading. Topical treatment of psoriasis. Decrease of the elastic modulus as the DS of CMC increased. | [28] |
BC/PHEMA | Embedding of bacterial cellulose nanofibers within PHEMA hydrogel matrices: tunable stiffness composites with potential for biomedical applications | New modification: in situ UV radical polymerization of HEMA monomer impregnated into wet BC nanofibrous structure. Significant improvement in mechanical properties. Tensile strength increased. Nontoxic. rMSCs (rat mesenchymal stem cells) proliferation. Tissue replacement and wound healing. | [29] |
BC/ε-poly-L-Lysine | Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine | Antimicrobial activity (broad-spectrum) without affecting the beneficial structural and mechanical properties Modification with non-toxic biopolymer ε-PLL inhibited growth of S. epidermidis on the membranes but did not affect the cytocompatibility to cultured human fibroblast. | [30] |
BC/PVA | Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial | Higher visible light transmittance than plain BC. | [31] |
BC/HA | Bacterial cellulose/hyaluronic acid composite hydrogels with improved viscoelastic properties and good thermodynamic stability | Higher visible light transmittance than plain BC. | [32] |
ABC/urinary bladder matrix | Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium | Higher adhesion and proliferation of retinal pigment epithelium cells than uncoated BC. Closer recapitulation of the in vivo cell phenotype than uncoated BC. | [33] |
BC/varying porosity | Bacterial cellulose-based biomimetic nanofibrous scaffold with muscle cells for hollow organ tissue engineering | Higher pore size than native BC to allow muscle cell ingrowth. Higher porosity. Small decrease in mechanical strength. | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupașcu, R.E.; Ghica, M.V.; Dinu-Pîrvu, C.-E.; Popa, L.; Velescu, B.Ș.; Arsene, A.L. An Overview Regarding Microbial Aspects of Production and Applications of Bacterial Cellulose. Materials 2022, 15, 676. https://doi.org/10.3390/ma15020676
Lupașcu RE, Ghica MV, Dinu-Pîrvu C-E, Popa L, Velescu BȘ, Arsene AL. An Overview Regarding Microbial Aspects of Production and Applications of Bacterial Cellulose. Materials. 2022; 15(2):676. https://doi.org/10.3390/ma15020676
Chicago/Turabian StyleLupașcu, Raluca Elisabeta, Mihaela Violeta Ghica, Cristina-Elena Dinu-Pîrvu, Lăcrămioara Popa, Bruno Ștefan Velescu, and Andreea Letiția Arsene. 2022. "An Overview Regarding Microbial Aspects of Production and Applications of Bacterial Cellulose" Materials 15, no. 2: 676. https://doi.org/10.3390/ma15020676
APA StyleLupașcu, R. E., Ghica, M. V., Dinu-Pîrvu, C.-E., Popa, L., Velescu, B. Ș., & Arsene, A. L. (2022). An Overview Regarding Microbial Aspects of Production and Applications of Bacterial Cellulose. Materials, 15(2), 676. https://doi.org/10.3390/ma15020676