Effect of Exposure to Environmental Cycling on the Thermal Conductivity of Expanded Polystyrene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Experimental Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United States Environmental Protection Agency. Available online: https://www.epa.gov/ (accessed on 14 July 2022).
- European Commission. Available online: https://ec.europa.eu/ (accessed on 14 July 2022).
- Santamouris, M.; Vasilakopoulou, K. Present and future energy consumption of buildings: Challenges and opportunities towards decarbonization. E-Prime Adv. Electr. Eng. Electron. Energy 2021, 1, 100002. [Google Scholar] [CrossRef]
- Urge-Vorsatz, D.; Cabeza, L.F.; Serrano, S.; Barreneche, C.; Patrichenko, K. Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 2015, 41, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Eurostat—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/ (accessed on 18 July 2022).
- Sulong, N.H.R.; Mustapa, S.A.S.; Rashid, M.K.A. Application of expanded polystyrene (EPS) in buildings and constructions: A review. J. Appl. Polym. Sci. 2019, 136, 47529. [Google Scholar] [CrossRef] [Green Version]
- Pavel, C.C.; Blagoeva, D.T. Competitive Landscape of the EU’s Insulation Materials Industry for Energy-Efficient Buildings; EUR 28816 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-96383-4. [Google Scholar] [CrossRef]
- Gnip, I.J.; Veyelis, S.A.; Kersulis, V.I.; Vaitkus, S.I. Deformability and strength of expanded polystyrene (EPS) under short-term shear loading. Mech. Compos. Mater. 2007, 43, 121–134. [Google Scholar]
- Chen, W.; Hao, H.; Hughes, D.; Shi, Y.; Cui, J.; Li, Z.X. Static and dynamic mechanical properties of expanded polystyrene. Mater. Des. 2015, 69, 170–180. [Google Scholar] [CrossRef]
- Krundaeva, A.; De Bruyne, G.; Gagliardi, F.; Van Paepegem, W. Dynamic compressive strength and crushing properties of expanded polystyrene foam for different strain rates and different temperatures. Polym. Test. 2016, 55, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Hajdukovic, M.; Knez, N.; Kolsek, J.; Knez, F. Fire Performance of External Thermal Insulation Composite System (ETICS) Facades with Expanded Polystyrene (EPS) Insulation and Thin Rendering. Fire Technol. 2017, 53, 173–209. [Google Scholar] [CrossRef]
- Zhoua, B.; Yoshiokab, H.; Noguchia, T.; Andoa, T. Experimental study of expanded polystyrene (EPS) External Thermal Insulation Composite Systems (ETICS) masonery façade reaction-to-fire performance. Therm. Sci. Eng. Prog. 2018, 8, 83–92. [Google Scholar] [CrossRef]
- Hossain, M.D.; Hassan, M.K.; Akl, M.; Pathirana, S.; Rahnamayiezekavat, P.; Douglas, G.; Bhat, T.; Saha, S. Fire Behaviour of Insulation Panels Commonly Used in High-Rise Buildings. Fire 2022, 5, 81. [Google Scholar] [CrossRef]
- Tingley, D.D.; Hathway, A.; Davison, B. An environmental impact comparison of external wall insulation types. Build. Environ. 2015, 85, 182–189. [Google Scholar] [CrossRef]
- Uttaravallia, A.N.; Dindab, S.; Gidlaa, B.R. Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: A review. Process Saf. Environ. Prot. 2020, 137, 140–148. [Google Scholar] [CrossRef]
- Lim, Y.S.; Izhar, T.N.T.; Zakarya, I.A.; Yusuf, S.Y.; Zaaba, S.K.; Mohamad, M.A. Life cycle assessment of expanded polystyrene. Earth Environ. Sci. 2021, 920, 012030. [Google Scholar] [CrossRef]
- Gnip, I.; Vejelis, S.; Vaitkus, S. Thermal conductivity of expanded polystyrene (EPS) at 10 °C and its conversion to temperatures within interval from 0 to 50 °C. Energy Build. 2012, 52, 107–111. [Google Scholar] [CrossRef]
- Berardi, U.; Naldi, M. The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energy Build. 2017, 144, 262–275. [Google Scholar] [CrossRef]
- Khoukhi, M.; Fezzioui, N.; Draoui, B.; Salah, L. The impact of changes in thermal conductivity of polystyrene insulation material under different operating temperatures on the heat transfer through the building envelope. Appl. Therm. Eng. 2016, 105, 669–674. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, B.; Cremaschi, L. Review of moisture behavior and thermal performance of polystyrene insulation in building applications. Build. Environ. 2017, 123, 50–65. [Google Scholar] [CrossRef]
- Khoukhia, M.; Hassana, A.; Al Saadib, S.; Abdelbaqia, S. A dynamic thermal response on thermal conductivity at different temperature and moisture levels of EPS insulation. Case Stud. Therm. Eng. 2019, 14, 100481. [Google Scholar] [CrossRef]
- Khoukhia, M. The combined effect of heat and moisture transfer dependent thermal conductivity of polystyrene insulation material: Impact on building energy performance. Energy Build. 2018, 169, 228–235. [Google Scholar] [CrossRef]
- Dogan, B.; Tan, H. The Numerical and Experimental Investigation of the Change of the Thermal Conductivity of Expanded Polystyrene at Different Temperatures and Densities. Int. J. Polym. Sci. 2019, 2019, 6350326. [Google Scholar] [CrossRef] [Green Version]
- Lakatos, A.; Kalmar, F. Investigation of thickness and density dependence of thermal conductivity of expanded polystyrene insulation materials. Mater. Struct. 2013, 46, 1101–1105. [Google Scholar] [CrossRef]
- Veiseh, S.; Yousefi, A. Compressive behavior and thermal conductivity-density correlation of expanded polystyrene thermal insulators. Iran. Polym. J. 2021, 30, 849–854. [Google Scholar]
- Niu, F.; Jiang, H.; Su, W.; Jiang, W.; He, J. Performance degradation of polymer material under freeze-thaw cycles: A case study of extruded polystyrene board. Polym. Test. 2021, 96, 107067. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, E.; Niu, F.; Han, H.; Liu, X.; Ren, Z. Experimental Investigation on Performance Degradation of Insulation Materials Subjected to Freezing and Thawing Cycles and its Evaluation on Engineering Applications. Available online: https://ssrn.com/abstract=4072307 (accessed on 15 August 2022).
- EN 13163:2012; Thermal Insulation Products for Buildings—Factory Made Expanded Polystyrene (EPS) Products—Specification. European Standardisation Committee: Brussels, Belgium, 2012.
- ASTM C1512-10 (2020); Standard Test Method for Characterizing the Effect of Exposure to Environmental Cycling on Thermal Performance of Insulation Products. ASTM International: West Conshohocken, PA, USA, 2020.
Sample | Weight (g) | Thermal Conductivity (W/mK) | |||
---|---|---|---|---|---|
Measurement 1 | Measurement 2 | Measurement 3 | Mean Value | ||
A1 | 27.62 | 0.0395 | 0.0396 | 0.0396 | 0.0396 |
A2 | 29.41 | 0.0394 | 0.0396 | 0.0396 | 0.0395 |
A3 | 28.60 | 0.0393 | 0.0395 | 0.0394 | 0.0394 |
Sample | Weight (g) | Thermal Conductivity (W/mK) | |||
---|---|---|---|---|---|
Measurement 1 | Measurement 2 | Measurement 3 | Mean Value | ||
A1 | 47.50 | 0.0411 | 0.0413 | 0.0414 | 0.0413 |
A2 | 62.09 | 0.0417 | 0.0420 | 0.0420 | 0.0419 |
A3 | 42.78 | 0.0412 | 0.0414 | 0.0413 | 0.0413 |
Unexposed | Exposed | ||
---|---|---|---|
Sample | Compressive Stress at 10% (kPa) | Sample | Compressive Stress at 10% (kPa) |
B1 | 76.00 | A1 | 71.00 |
B2 | 76.00 | A2 | 68.00 |
B3 | 75.00 | A3 | 72.00 |
Mean value | 75.67 | Mean value | 70.33 |
Sample | Weight (g) | Percentage Difference (%) | |
---|---|---|---|
Before Exposure | After Exposure | ||
A1 | 27.62 | 47.50 | +71.98 |
A2 | 29.41 | 62.09 | +111.12 |
A3 | 28.60 | 42.78 | +49.58 |
Mean value | 28.54 | 50.79 | +77.56 |
Sample | Thermal Conductivity (W/mK) | Percentage Difference (%) | |
---|---|---|---|
Before Exposure | After Exposure | ||
A1 | 0.0396 | 0.0413 | +4.29 |
A2 | 0.0395 | 0.0419 | +6.08 |
A3 | 0.0394 | 0.0413 | +4.82 |
Mean value | 0.0395 | 0.0415 | +5.06 |
Element | Heat Transmitted by Conduction (Wh) | Percentage Difference (%) | ||
---|---|---|---|---|
Before Exposure | After Exposure | |||
Reinforced concrete | +5 cm | 24.19 | 25.25 | +4.40 |
+10 cm | 12.90 | 13.51 | +4.71 | |
+15 cm | 8.80 | 9.22 | +4.82 | |
Mean value | +4.64 | |||
Hollow brick masonry | +5 cm | 20.18 | 20.91 | +3.65 |
+10 cm | 11.67 | 12.16 | +4.24 | |
+15 cm | 8.20 | 8.57 | +4.48 | |
Mean value | +4.12 | |||
Autoclaved aerated concrete masonry | +5 cm | 16.38 | 16.86 | +2.94 |
+10 cm | 10.29 | 10.67 | +3.72 | |
+15 cm | 7.50 | 7.80 | +4.08 | |
Mean value | +3.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petre, S.G.; Isopescu, D.N.; Pruteanu, M.; Cojocaru, A. Effect of Exposure to Environmental Cycling on the Thermal Conductivity of Expanded Polystyrene. Materials 2022, 15, 6921. https://doi.org/10.3390/ma15196921
Petre SG, Isopescu DN, Pruteanu M, Cojocaru A. Effect of Exposure to Environmental Cycling on the Thermal Conductivity of Expanded Polystyrene. Materials. 2022; 15(19):6921. https://doi.org/10.3390/ma15196921
Chicago/Turabian StylePetre, Sergiu George, Dorina Nicolina Isopescu, Marian Pruteanu, and Alexandra Cojocaru. 2022. "Effect of Exposure to Environmental Cycling on the Thermal Conductivity of Expanded Polystyrene" Materials 15, no. 19: 6921. https://doi.org/10.3390/ma15196921
APA StylePetre, S. G., Isopescu, D. N., Pruteanu, M., & Cojocaru, A. (2022). Effect of Exposure to Environmental Cycling on the Thermal Conductivity of Expanded Polystyrene. Materials, 15(19), 6921. https://doi.org/10.3390/ma15196921