Effect of Cold-Rolling Reduction on Recrystallization Microstructure, Texture and Corrosion Properties of the X2CrNi12 Ferritic Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Processing
2.2. Microstructure Characterization
2.3. Electrochemical Test
3. Results and Discussion
3.1. Microstructure
3.2. Texture Evolution
3.3. Grain Boundary Characteristic Distribution
3.4. Electrochemical Test
4. Conclusions
- (1)
- The crystal orientation characteristics of the cold-rolled sheet can be inherited by the cold-rolled and annealed sheet, and a large cold-rolling reduction can increase the {111}<uvw> texture in the cold-rolling sheet, which can reduce the recrystallized grain size.
- (2)
- The orientation density of α and γ fibers is small at 50% cold-rolling reduction, and a large number of randomly oriented grains will be generated after recrystallization annealing, and the overall texture strength is low. When 90% cold-rolling steel is recrystallisation annealed, the γ-fiber texture at {111}<110> is strengthened and the α-fiber, particularly the {112}<110> component is decreased, which is beneficial to improve the formability of the steels.
- (3)
- The proportions of the special boundaries (LAGBs and Low-Σ CSL boundaries) are higher when the cold-rolling reduction is 90%, especially when the annealing temperature is 770 °C. Additionally, the LAGBs and low-Σ CSLs are 53% and 7.43%, respectively, showing the best corrosion resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Topic, M.; Allen, C.; Tait, R. The effect of cold work and heat treatment on the fatigue behaviour of 3CR12 corrosion resistant steel wire. Int. J. Fatigue 2007, 29, 49–56. [Google Scholar] [CrossRef]
- Zheng, H.; Ye, X.; Jiang, L.; Wang, B.; Liu, Z.; Wang, G. Study on microstructure of low carbon 12% chromium stainless steel in high temperature heat-affected zone. Mater. Des. 2010, 31, 4836–4841. [Google Scholar] [CrossRef]
- Zheng, H.; Ye, X.; Li, J.; Jiang, L.; Liu, Z.; Wang, G.; Wang, B. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr–Ni stainless steel. Mater. Sci. Eng. A 2010, 527, 7407–7412. [Google Scholar] [CrossRef]
- Wang, L.-X.; Song, C.-J.; Sun, F.-M.; Li, L.-J.; Zhai, Q.-J. Microstructure and mechanical properties of 12 wt.% Cr ferritic stainless steel with Ti and Nb dual stabilization. Mater. Des. 2009, 30, 49–56. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Wang, W.; Yan, Z.; Dong, P.; Du, H.; Ding, M. Microstructure evolution in heat affected zone of T4003 ferritic stainless steel. Mater. Des. 2015, 68, 114–120. [Google Scholar] [CrossRef]
- Li, R.; Fu, B.-G.; Dong, T.-S.; Li, G.-L.; Li, J.-K.; Zhao, X.-B.; Liu, J.-H. Effect of annealing treatment on microstructure, mechanical property and anti-corrosion behavior of X2CrNi12 ferritic stainless steel. J. Mater. Res. Technol. 2022, 18, 448–460. [Google Scholar] [CrossRef]
- Park, Y.; Lee, D.; Gottstein, G. Development of texture inhomogeneity during hot rolling in interstitial free steel. Acta Mater. 1996, 44, 3421–3427. [Google Scholar] [CrossRef]
- Cai, G.; Li, C.; Wang, D.; Zhou, Y. Investigation of annealing temperature on microstructure and texture of Fe-19Cr-2Mo-Nb-Ti ferritic stainless steel. Mater. Charact. 2018, 141, 169–176. [Google Scholar] [CrossRef]
- Fu, J.; Li, F.; Sun, J.; Wu, Y. Texture, orientation, and mechanical properties of Ti-stabilized Fe-17Cr ferritic stainless steel. Mater. Sci. Eng. A 2018, 738, 335–343. [Google Scholar] [CrossRef]
- de Abreu, H.; Bruno, A.; Tavares, S.; Santos, R.; Carvalho, S. Effect of high temperature annealing on texture and microstructure on an AISI-444 ferritic stainless steel. Mater. Charact. 2006, 57, 342–347. [Google Scholar] [CrossRef]
- Huh, M.-Y.; Engler, O. Effect of intermediate annealing on texture, formability and ridging of 17% Cr ferritic stainless steel sheet. Mater. Sci. Eng. A 2001, 308, 74–87. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Wang, G. Effects of hot rolled shear bands on formability and surface ridging of an ultra purified 21% Cr ferritic stainless steel. J. Mater. Process. Technol. 2011, 211, 1051–1059. [Google Scholar] [CrossRef]
- Rodrigues, D.G.; Alcântara, C.M.; Oliveira, T.R.; Gonzalez, B.M. The effect of grain size and initial texture on microstructure, texture, and formability of Nb stabilized ferritic stainless steel manufactured by two-step cold rolling. J. Mater. Res. Technol. 2019, 8, 4151–4162. [Google Scholar] [CrossRef]
- Yan, H.T.; Bi, H.Y.; Li, X.; Xu, Z. Effect of two-step cold rolling and annealing on texture, grain boundary character distribution and r-value of Nb + Ti stabilized ferritic stainless steel. Mater. Charact. 2009, 60, 65–68. [Google Scholar] [CrossRef]
- Han, J.; Li, H.J.; Zhu, Z.X.; Jiang, L.Z.; Xu, H.G.; Ma, L. Effects of processing optimisation on microstructure, texture, grain boundary and mechanical properties of Fe-17Cr ferritic stainless steel thick plates. Mater. Sci. Eng. A 2014, 616, 20–28. [Google Scholar] [CrossRef]
- Shimada, M.; Kokawa, H.; Wang, Z.; Sato, Y.; Karibe, I. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Mater. 2002, 50, 2331–2341. [Google Scholar] [CrossRef]
- Li, J.; Ren, X.; Gao, X. Effect of superplastic deformation on microstructure evolution of 3207 duplex stainless steel. Mater. Charact. 2020, 164, 110320. [Google Scholar] [CrossRef]
- Mola, J.; Jung, I.; Park, J.; Chae, D.; De Cooman, B.C. Ridging Control in Transformable Ferritic Stainless Steels. Met. Mater. Trans. A 2012, 43, 228–244. [Google Scholar] [CrossRef]
- Meng, L.; Lu, H.; Li, W.; Guo, H.; Tian, J.; Liang, W. High strength and plasticity of AISI 430 ferritic stainless steel achieved by a recrystallization annealing before quenching and partitioning process. Mater. Sci. Eng. A 2021, 814, 141191. [Google Scholar] [CrossRef]
- Barnett, M.R. Role of in-grain shear bands in the nucleation of <111>//ND recrystallization textures in warm rolled steel. ISIJ Int. 1998, 38, 78–85. [Google Scholar] [CrossRef]
- Ray, R.K.; Jonas, J.J.; Hook, R.E. Cold rolling and annealing textures in low carbon and extra low carbon steels. Int. Mater. Rev. 1994, 39, 129–172. [Google Scholar] [CrossRef]
- Raabe, D. On the influence of the chromium content on the evolution of rolling textures in ferritic stainless steels. J. Mater. Sci. 1996, 31, 3839–3845. [Google Scholar] [CrossRef]
- Raabe, D.; Lüucke, K. Textures of Ferritic Stainless Steels. Mater. Sci. Technol. 1993, 9, 302–312. [Google Scholar] [CrossRef]
- Miyamoto, H.; Xiao, T.; Uenoya, T.; Hatano, M. Effect of Simple Shear Deformation Prior to Cold Rolling on Texture and Ridging of 16% Cr Ferritic Stainless Steel Sheets. ISIJ Int. 2010, 50, 1653–1659. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zhao, J.; Du, W.; Zhang, X.; Jiang, L.; Jiang, Z. An analysis of ridging of ferritic stainless steel 430. Mater. Sci. Eng. A 2017, 685, 358–366. [Google Scholar] [CrossRef]
- Hamada, J.-I.; Ono, N.; Inoue, H. Effect of Texture on r-value of Ferritic Stainless Steel Sheets. ISIJ Int. 2011, 51, 1740–1748. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; He, T.; Liu, Y. Effects of Sn microalloying on cold rolling and recrystallization textures and microstructure of a ferritic stainless steel. Mater. Charact. 2018, 137, 142–150. [Google Scholar] [CrossRef]
- Liu, M.; Gong, W.; Zheng, R.; Li, J.; Zhang, Z.; Gao, S.; Ma, C.; Tsuji, N. Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered or recrystallized nanostructures. Acta Mater. 2022, 226, 117629. [Google Scholar] [CrossRef]
- Lu, H.-H.; Li, W.-Q.; Du, L.-Y.; Guo, H.-K.; Liang, W.; Zhang, W.-G.; Liu, Z.-G. The effects of martensitic transformation and (Fe, Cr)23C6 precipitation on the properties of transformable ferritic stainless steel. Mater. Sci. Eng. A 2019, 754, 502–511. [Google Scholar] [CrossRef]
- Meng, G.; Li, Y.; Shao, Y.; Zhang, T.; Wang, Y.; Wang, F.; Cheng, X.; Dong, C.; Li, X. Effect of Microstructures on Corrosion Behavior of Nickel Coatings: (II) Competitive Effect of Grain Size and Twins Density on Corrosion Behavior. J. Mater. Sci. Technol. 2015, 32, 465–469. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, C.; Hao, H.; Xu, Y.-D.; Zhu, X.-R. Effect of ageing treatment on microstructures, mechanical properties and corrosion behavior of Mg-Zn-RE-Zr alloy micro-alloyed with Ca and Sr. China Foundry 2021, 18, 131–140. [Google Scholar] [CrossRef]
- Hu, Z.; Yin, Z.; Yin, Z.; Wang, K.; Liu, Q.; Sun, P.; Yan, H.; Song, H.; Luo, C.; Guan, H.; et al. Corrosion behavior characterization of as extruded Mg-8Li-3Al alloy with minor alloying elements (Gd, Sn and Cu) by scanning Kelvin probe force microscopy. Corros. Sci. 2020, 176, 108923. [Google Scholar] [CrossRef]
- Liu, X.; Xue, J.; Liu, S. Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities. Mater. Des. 2018, 160, 138–146. [Google Scholar] [CrossRef]
- Mahdavian, M.; Attar, M. Another approach in analysis of paint coatings with EIS measurement: Phase angle at high frequencies. Corros. Sci. 2006, 48, 4152–4157. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Vafaeian, S. Influence of grain refinement on the electrochemical behavior of AISI 430 ferritic stainless steel in an alkaline solution. Appl. Surf. Sci. 2016, 360, 921–928. [Google Scholar] [CrossRef]
- Ishibashi, R.; Horiuchi, T.; Kuniya, J.; Yamamoto, M.; Tsurekawa, S.; Kokawa, H.; Watanabe, T.; Shoji, T. Effect of Grain Boundary Character Distribution on Stress Corrosion Cracking Behavior in Austenitic Stainless Steels. Mater. Sci. Forum 2005, 475–479, 3863–3866. [Google Scholar] [CrossRef]
- Pan, Y.; Adams, B.; Olson, T.; Panayotou, N. Grain-boundary structure effects on intergranular stress corrosion cracking of alloy X-750. Acta Mater. 1996, 44, 4685–4695. [Google Scholar] [CrossRef]
C | Mn | Si | Cr | P | S | Ni | N | Fe |
---|---|---|---|---|---|---|---|---|
0.02 | 1.2 | 0.28 | 11.7 | 0.02 | 0.01 | 0.68 | 0.013 | Bal. |
Specimens | HAGBs | LAGBs | Low-Σ CSLs |
---|---|---|---|
50%-deformed | 15% | 85% | 2.05% |
50%-720 °C | 75% | 25% | 8.15% |
50%-740 °C | 72% | 28% | 6.86% |
50%-770 °C | 49% | 51% | 7.50% |
90%-deformed | 20% | 80% | 2.32% |
90%-720 °C | 69% | 31% | 7.98% |
90%-740 °C | 71% | 29% | 9.09% |
90%-770 °C | 47% | 53% | 7.43% |
Specimens | 50%-720 °C | 50%-740 °C | 50%-770 °C |
---|---|---|---|
icorr (μA/cm2) | 5.613 ± 0.432 | 3.269 ± 0.485 | 2.433 ± 0.211 |
Ecorr (VSCE) | −0.463 ± 0.013 | −0.449 ± 0.015 | −0.408 ± 0.092 |
Specimens | 90%-720 °C | 90%-740 °C | 90%-770 °C |
---|---|---|---|
icorr (μA/cm2) | 3.71 ± 0.672 | 2.81 ± 0.563 | 2.01 ± 0.232 |
Ecorr (VSCE) | −0.430 ± 0.015 | −0.413 ± 0.012 | −0.381 ± 0.027 |
Specimens | Rs | Rt | CPE | |
---|---|---|---|---|
Ω·cm2 | Ω·cm2 | Y0 (μF/cm2) | n | |
50%-720 °C | 7.152 | 4985 | 330.5 | 0.8631 |
50%-740 °C | 7.289 | 5026 | 285.6 | 0.8725 |
50%-770 °C | 7.891 | 6446 | 112.8 | 0.8847 |
90%-720 °C | 7.289 | 5103 | 300.1 | 0.8701 |
90%-740 °C | 7.446 | 5687 | 245.7 | 0.8795 |
90%-770 °C | 7.986 | 6852 | 103.5 | 0.8912 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Fu, B.; Wang, Y.; Li, J.; Dong, T.; Li, G.; Zhang, G.; Liu, J. Effect of Cold-Rolling Reduction on Recrystallization Microstructure, Texture and Corrosion Properties of the X2CrNi12 Ferritic Stainless Steel. Materials 2022, 15, 6914. https://doi.org/10.3390/ma15196914
Li R, Fu B, Wang Y, Li J, Dong T, Li G, Zhang G, Liu J. Effect of Cold-Rolling Reduction on Recrystallization Microstructure, Texture and Corrosion Properties of the X2CrNi12 Ferritic Stainless Steel. Materials. 2022; 15(19):6914. https://doi.org/10.3390/ma15196914
Chicago/Turabian StyleLi, Rui, Binguo Fu, Yufeng Wang, Jingkun Li, Tianshun Dong, Guolu Li, Guixian Zhang, and Jinhai Liu. 2022. "Effect of Cold-Rolling Reduction on Recrystallization Microstructure, Texture and Corrosion Properties of the X2CrNi12 Ferritic Stainless Steel" Materials 15, no. 19: 6914. https://doi.org/10.3390/ma15196914
APA StyleLi, R., Fu, B., Wang, Y., Li, J., Dong, T., Li, G., Zhang, G., & Liu, J. (2022). Effect of Cold-Rolling Reduction on Recrystallization Microstructure, Texture and Corrosion Properties of the X2CrNi12 Ferritic Stainless Steel. Materials, 15(19), 6914. https://doi.org/10.3390/ma15196914