Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Details
3. Experimental Design
3.1. Friction and Wear Analysis
3.2. Response Surface Methodology (RSM)
4. Result and Discussion
4.1. Effect of Applied Load, Sliding Velocity and Sliding Distance with 30 and 35 wt.% Glass Fiber Weight on Coefficient of Friction
4.2. Effect of Applied Load, Sliding Velocity and Sliding Distance with Constant Glass Fiber Content 30% and 35% Weight on SWR
4.3. Optimization of Experimental Condition of GFRPA66 30 wt.% and GFRPA66 35 wt.%
Development of Response Surface Models of Composite Specimens
Experimental Validation
4.4. Worn Surface Morphology for Variations in Sliding Velocity and Sliding Distance at 80N Load
5. Conclusions
- The friction coefficient and SWR decreases with increase in weight percentage of glass fiber content and lowest values are achieved for 35 wt.% of glass fiber.
- The SWR of GFRPA66 30 wt.% ranges from 0.0120 m3/Nm to 0.0164 m3/Nm for different set of process parameters. Similarly, the SWR of GFRPA6635 wt.% range from 0.0101 m3/Nm to 0.0161 m3/Nm. However, as the load, sliding velocity and sliding distance increases, the SWR decreases.
- The coefficient of friction values ranges from 0.22 to 0.37 for GFRPA66 30 wt.%, while the coefficient of friction values ranges from 0.15 to 0.31 for GFRPA 66 35 wt.% for different set of process parameters, which are carefully observed and optimized.
- The ANOVA revealed that the significant and insignificant terms used for the model (i.e., the “F-value” of GFRPA66 30 wt.% and GFRPA66 35 wt.% for the developed model) was found to be 96.25 and 44.54 for COF and 17411.57 and 48.87 for SWR, respectively, indicating that both models are statistically significant.
- The R2 values for COF for GFRPA66 30 wt.% (R2 values-0.9886 and R2adj -0.9783) and COF for GFRPA66 35 wt.% (R2 values- 0.9757 and R2adj -0.9538) are close to a unity. In the case of SWR, GFRPA66 30 wt.% (R2 = 0.9999 and R2adj. = 0.9999) and SWR- GFRPA66 35 wt.% (R2 = 0.9778 and R2adj. = 0.9578) are also close to unity.
- Based on the significant terms, the polynomial equations are formed and using this equation, optimized COF and SWR are estimated.
- The experimental validations signified that the predicted values are in good conformity with the actual data and the developed models are adequate.
- The SEM image showed the wear mechanism of the worn out surface of composites and glass fibers which have come out of the polyamide surface for GFRPA66 30 wt.% and is more than the GFRPA66 35 wt.% composites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sidiq, P.; Abdalrahman, R.M.; Rostam, S. Optimizing the simultaneous cutting-edge angles, included angle and nose radius for low cutting force in turning polyamide PA66. Results Mater. 2020, 7, 100100. [Google Scholar] [CrossRef]
- Muhandes, H.; Kalácska, Á.; Székely, L.; Keresztes, R.; Kalácska, G. Abrasive Sensitivity of Engineering Polymers and a Bio-Composite under Different Abrasive Conditions. Materials 2020, 13, 5239. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.W.; Kim, S.S.; Jang, H. Friction and Wear of Polyamide 66 With Different Weight Average Molar Mass. Tribol. Lett. 2011, 44, 151–158. [Google Scholar] [CrossRef]
- Wang, H.-G.; Ren, J.-F.; Jian, L.; Pan, B.; Zhang, J.-Y.; Yang, S.-R. Friction and Wear Behavior of Polyamide 66/Poly(vinylidene fluoride) Blends. J. Macromol. Sci. Part B 2008, 47, 701–711. [Google Scholar] [CrossRef]
- Ruan, H.; Zhang, Q.; Liao, W.; Li, Y.; Huang, X.; Xu, X.; Lu, S. Enhancing tribological, mechanical, and thermal properties of polyimide composites by the synergistic effect between graphene and ionic liquid. Mater. Des. 2020, 189, 108527. [Google Scholar] [CrossRef]
- Villanueva, J.L.; Trino, J.; Thomas, D.; Bijukumar, D.; Royhman, M.M.; Stack, M.T. Mathew, Corrosion, tribology, and tribocor-rosion research in biomedical implants: Progressive trend in the published literature. J. Bio. Tribo. Corros. 2016, 3, 1. [Google Scholar] [CrossRef]
- Kurdi, A.; Chang, L. Recent Advances in High Performance Polymers—Tribological Aspects. Lubricants 2018, 7, 2. [Google Scholar] [CrossRef]
- Friedrich, K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39. [Google Scholar] [CrossRef]
- Golchin, A.; Simmons, G.; Glavatskih, S.; Prakash, B. Tribological behaviour of polymeric materials in water-lubricated contacts. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 2013, 227, 811–825. [Google Scholar] [CrossRef]
- Srinath, G.; Gnanamoorthy, R. Effect of Short Fibre Reinforcement on the Friction and Wear Behaviour of Nylon 66. Appl. Compos. Mater. 2005, 12, 369–383. [Google Scholar] [CrossRef]
- Ye, J.; Khare, H.; Burris, D. Transfer film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite. Wear 2013, 297, 1095–1102. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Lü, R.; Li, T. Friction and wear mechanisms of PA66/PPS blend reinforced with carbon fiber. J. Appl. Polym. Sci. 2007, 105, 602–608. [Google Scholar] [CrossRef]
- Bondy, M.; Rodgers, W.; Altenhof, W. Tensile fatigue characterization of polyamide 66/carbon fiber direct/in-line compounded long fiber thermoplastic composites. Compos. Part B Eng. 2019, 173, 106984. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Fonseca, J.H.; Han, G.; Quagliato, L.; Kim, Y.; Choi, J.; Keum, T.; Kim, S.; Han, D.S.; Kim, N.; Lee, H. Design and numerical evaluation of recycled-carbon-fiber-reinforced polymer/metal hybrid engine cradle concepts. Int. J. Mech. Sci. 2019, 163, 105115. [Google Scholar] [CrossRef]
- Nagaraja, K.; Rajanna, S.; Prakash, G.; Rajeshkumar, G. Mechanical properties of polymer matrix composites: Effect of hybridization. Mater. Today: Proc. 2020, 34, 536–538. [Google Scholar] [CrossRef]
- Sudheer, M.; Hemanth, K.; Raju, K.; Bhat, T. Enhanced Mechanical and Wear Performance of Epoxy/glass Composites with PTW/Graphite Hybrid Fillers. Procedia Mater. Sci. 2014, 6, 975–987. [Google Scholar] [CrossRef]
- Panwar, V.; Chattree, A.; Pal, K. Effect of Nanoclay on Thermomechanical Behaviour of Graphene Oxide/Polymer Composites. Procedia Eng. 2017, 216, 101–110. [Google Scholar] [CrossRef]
- Tang, G.; Huang, W.; Chang, D.; Nie, W.; Mi, W.; Yan, W. The Friction and Wear of Aramid Fiber-Reinforced Polyamide 6 Composites Filled with Nano-MoS2. Polym. Technol. Eng. 2011, 50, 1537–1540. [Google Scholar] [CrossRef]
- Chen, Z.; Li, T.; Liu, X.; Lü, R. Friction and wear mechanisms of polyamide 66/high density polyethylene blends. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 2514–2523. [Google Scholar] [CrossRef]
- Mistry, M.; Randhawa, K.S. Investigations of the influence of hexagonal boron nitride particulates on mechanical & tribological properties of PA66. J. Physics: Conf. Ser. 2020, 1706, 012180. [Google Scholar] [CrossRef]
- Kunishima, T.; Kurokawa, T.; Arai, H.; Fridrici, V.; Kapsa, P. Reactive extrusion mechanism, mechanical and tribological behavior of fiber reinforced polyamide 66 with added carbodiimide. Mater. Des. 2018, 188, 108447. [Google Scholar] [CrossRef]
- Clavería, I.; Gimeno, S.; Miguel, I.; Mendoza, G.; Lostalé, A.; Fernández, Á.; Castell, P.; Elduque, D. Tribological Performance of Nylon Composites with Nanoadditives for Self-Lubrication Purposes. Polymers 2020, 12, 2253. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Zhang, G.; Ma, K.; Chen, T.; Zhao, X. Study on the Friction and Wear Behaviors of Modified PA66 Composites. Polym. Technol. Eng. 2009, 48, 633–638. [Google Scholar] [CrossRef]
- Briscoe, B.J.; Sinha, S.K. Tribological applications of polymers and their composites: Past, present and future prospects. Tribol. Inter Eng. 2008, 55, 1–14. [Google Scholar]
- Ravichandran, G.; Rathnakar, G.; Santhosh, N.; Thejaraju, R. Antiwear Performance Evaluation of Halloysite Nanotube (HNT) Filled Polymer Nanocomposites. Int. J. Eng. Adv. Technol. 2019, 9, 3314–3321. [Google Scholar]
- Rodiouchkina, M.; Lind, J.; Pelcastre, L.; Berglund, K.; Rudolphi, K.; Hardell, J. Tribological behaviour and transfer layer development of self-lubricating polymer composite bearing materials under long duration dry sliding against stainless steel. Wear 2021, 484-485, 204027. [Google Scholar] [CrossRef]
- Kumara, S.; Panneerselvam, K. Optimization of Friction and Wear of Nylon 6 and Glass Fiber Reinforced (GFR) Nylon 6 Composites against 30wt.% GFR Nylon 6 Disc. J. Adv. Res. Mater. Sci. 2016, 19, 14–32. [Google Scholar]
- Autay, R.; Missaoui, S.; Mars, J.; Dammak, F. Mechanical and tribological study of short glass fiber-reinforced PA 66. Polym. Polym. Compos. 2019, 27, 587–596. [Google Scholar] [CrossRef]
- Rymuza, Z. Tribology of polymers. Arch. Civ. Mech. Eng. 2007, 7, 177–184. [Google Scholar] [CrossRef]
- Klump, K.; Tenzer, D.; Pfaendner, R.; Schönberger, F. Mode of dipentaerythritol stabilization during thermo-oxidative aging of glass fibre reinforced PA66. Polym. Degrad. Stab. 2021, 184, 109471. [Google Scholar] [CrossRef]
- Purkayastha, S.; Dutta, A.; Ghosh, A.K.; Saha, N.C. Processability and performance property correlation for LDPE/PA6-based nanocomposite and its monolayer blown film for packaging application. Bull. Mater. Sci. 2022, 45, 47. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Wang, K.; Yao, S.; Peng, Y.; Rao, Y.; Ahzi, S. Progressive collapse behaviors and mechanisms of 3D printed thin-walled composite structures under multi-conditional loading. Thin-Walled Struct. 2022, 171, 108810. [Google Scholar] [CrossRef]
- Vinny, R.S. 6—Engineering Thermoplastics: Acrylics, Polycarbonates, Polyurethanes, Polyacetals, Polyesters, and Polyamides. In Plastics Design Library, Plastics in Medical Devices, 3rd ed.; Vinny, R.S., Ed.; William Andrew Publishing: Norwich, NY, USA, 2022; pp. 167–232. [Google Scholar] [CrossRef]
- Ganorkar, S.B.; Shirkhedkar, A.A. Design of experiments in liquid chromatography (HPLC) analysis of pharmaceuticals: Analytics, applications, implications and future prospects. Rev. Anal. Chem. 2017, 36, 20160025. [Google Scholar] [CrossRef]
- Radini, F.A.; Ghozali, M.; Ujianto, O.; Haryono, A. Effect of Fillers and Processing Parameters on the Shrinkage of Injected Molding Polyamide 66. Int. J. Mater. Mech. Manuf. 2019, 7, 165–169. [Google Scholar] [CrossRef]
- Boaretti, C.; Rossignolo, G.; Roso, M.; Modesti, M.; Kandola, B.; Vendrame, A.; Lorenzetti, A. Investigation and Optimization of Vacuum Plasma Treatment of PA66 Fabric for Reduced Fire Retardant Consumption. ACS Omega 2022, 7, 21775–21787. [Google Scholar] [CrossRef]
- Huang, C.-T.; Xu, R.-T.; Chen, P.-H.; Jong, W.-R.; Chen, S.-C. Investigation on the machine calibration effect on the optimization through design of experiments (DOE) in injection molding parts. Polym. Test. 2020, 90, 106703. [Google Scholar] [CrossRef]
- Di Benedetto, R.M.; Gomes, G.F.; Janotti, A.; Junior, A.C.A.; Botelho, E.C. Statistical approach to optimize crashworthiness of thermoplastic commingled composites. Mater. Today Commun. 2022, 31, 103651. [Google Scholar] [CrossRef]
- Sisay, M.; Balasubramanian, E. Optimization of fatigue strength of selective inhibition sintered polyamide 12 parts using RSM. Manuf. Rev. 2020, 7, 23. [Google Scholar] [CrossRef]
- Chavhan, G.; Wankhade, L. Optimization of Test Parameters that Influence on Dry Sliding Wear Performance of Steel Embedded Glass/Epoxy Hybrid Composites by Using the Taguchi Approach. Tribol. Ind. 2020, 42, 556–571. [Google Scholar] [CrossRef]
- Murali, B.; Ramnath, B.M.V.; Rajamani, D.; Nasr, E.A.; Astarita, A.; Mohamed, H. Experimental Investigations on Dry Sliding Wear Behavior of Kevlar and Natural Fiber-Reinforced Hybrid Composites through an RSM–GRA Hybrid Approach. Materials 2022, 15, 749. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, G.; Rathnakar, G.; Santhosh, N.; Suresh, R. Wear Characterization of HNT Filled Glass-Epoxy Composites Using Taguchi’s Design of Experiments and Study of Wear Morphology. Compos. Theory Pract. 2020, 20, 85–91. [Google Scholar]
- Puhan, M.R.; Sutariya, B.; Karan, S. Revisiting the alkali hydrolysis of polyamide nanofiltration mem-branes. J. Membr. Sci. 2022, 661, 120887. [Google Scholar] [CrossRef]
- Ramokgopa, S.K.; Sikhwivhilu, K.; Moutloali, R.M.; Moothi, K. Process optimisation through Response Surface Methodology for treatment of acid mine drainage using carbon nanotubes-infused thin film nano-composite membranes. Phys. Chem. Earth Parts A/B/C 2021, 124, 103008. [Google Scholar] [CrossRef]
- Benzannache, N.; Belaadi, A.; Boumaaza, M.; Bourchak, M. Improving the mechanical performance of biocomposite plaster/Washingtonian filifira fibres using the RSM method. J. Build. Eng. 2021, 33, 101840. [Google Scholar] [CrossRef]
- Fuat, T. Experimental Investigation of Mechanical Properties for Injection Molded PA66+PA6I/6T Composite Using RSM and Grey Wolf Optimization. El-Cezerî J. Sci. Eng. 2020, 7, 835–847. [Google Scholar] [CrossRef]
- Suresha, B.; Kumar, B.N.R. Two-body abrasive wear behavior of particulate filled polyamide66/polypropylene nanocomposites. J. Appl. Polym. Sci. 2011, 119, 2292–2301. [Google Scholar] [CrossRef]
- Güllü, A.; Özdemir, A.; Ozdemir, E. Experimental investigation of the effect of glass fibres on the mechanical properties of polypropylene (PP) and polyamide 6 (PA6) plastics. Materials & Design—MATER DESIGN. 2006, 27, 316–323. [Google Scholar] [CrossRef]
- Harrass, K.; Mauer, S.; Tsekov, R. Resistance of glass fibre reinforced polyamide 6.6 materials to automotive cooling fluids: An analytical method for lifetime prediction. Polym. Int. 2022, 71, 724–733. [Google Scholar] [CrossRef]
- Zhang, S.; Cui, C.; Chen, G. Tribological behavior of MC Nylon6 composites filled with glass fiber and fly ash. J. Wuhan Univ. Technol. Sci. Ed. 2012, 27, 290–295. [Google Scholar] [CrossRef]
- Mahesh, V.; Joladarashi, S.; Kulkarni, S.M. A comprehensive review on material selection for polymer matrix composites subjected to impact load. Def. Technol. 2020, 17, 257–277. [Google Scholar] [CrossRef]
- Chan, J.X.; Wong, J.F.; Petrů, M.; Hassan, A.; Nirmal, U.; Othman, N.; Ilyas, R.A. Effect of Nanofillers on Tribological Properties of Polymer Nanocomposites: A Review on Recent Development. Polymers 2021, 13, 2867. [Google Scholar] [CrossRef] [PubMed]
- Jenczyk, P.; Grzywacz, H.; Milczarek, M.; Jarząbek, D. Mechanical and Tribological Properties of Co-Electrodeposited Particulate-Reinforced Metal Matrix Composites: A Critical Review with Interfacial Aspects. Materials 2021, 14, 3181. [Google Scholar] [CrossRef]
- Nagaraja, S.; Anand, P.B.; Naik, R.N.M.; Gunashekaran, S. Effect of aging on the biopolymer composites: Mechanisms, modes and characterization. Polym. Compos. 2022, 43, 4115–4125. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, Y.; Yang, J.-C.; Wang, X.-J.; Zhang, M.-L.; Zhang, G.; Long, S.-R.; Liu, S.; Yang, J. Improved interfacial shear strength in carbon fiber enhanced semi-aromatic polyamide 6T composite via in-situ polymerization on fiber surface. Compos. Sci. Technol. 2022, 223, 109401. [Google Scholar] [CrossRef]
- Choudhari, D.S.; Kakhandki, V.J. Comprehensive study and analysis of mechanical properties of chopped carbon fibre reinforced nylon 66 composite materials. Mater. Today Proc. 2020, 44, 4596–4601. [Google Scholar] [CrossRef]
- Fathima, S.B.D.S.; Deeraj, S.; Appukuttan, K. 12—Carbon Fiber and Glass Fiber Reinforced Elastomeric Composite, Fiber Reinforced Composites Constituents, Compatibility, Perspectives, and Applications Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2021; pp. 307–340. [Google Scholar] [CrossRef]
- Zsófia, K.; Ákos, P.; Andrea, T. The flame retardancy of polyamide 6—prepared by in situ polymerisation of ε-caprolactam—For T-RTM applications. Polym. Degrad. Stab. 2022, 195, 109797. [Google Scholar] [CrossRef]
- Oliver-Ortega, H.; Julian, F.; Espinach, F.X.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P. 6—Biobased polyamide reinforced with natural fiber composites,,Fiber Reinforced Composites Constituents, Compatibility, Perspectives, and Applications, Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2021; pp. 141–165. [Google Scholar] [CrossRef]
- Umesh, G.; Rudresh, B.; Krishnaprasad, N.; Madhu, D. Micro fillers effect on two body abrasive wear behavior of Polyamide 66, Polyamide 6 blend based composites. Mater. Today: Proc. 2021, 54, 217–222. [Google Scholar] [CrossRef]
- Afzal, A.; Khan, S.A.; Islam, T.; Jilte, R.D.; Khan, A.; Soudagar, M.E.M. Investigation and back-propagation modeling of base pressure at sonic and supersonic Mach numbers. Phys. Fluids 2020, 32, 096109. [Google Scholar] [CrossRef]
- David, O.; Okwu, M.O.; Oyejide, O.J.; Taghinezhad, E.; Asif, A.; Kaveh, M. Optimizing Biodiesel Production from Abundant Waste Oils through Empirical Method and Grey Wolf Optimizer. Fuel 2020, 281, 118701. [Google Scholar] [CrossRef]
- Afzal, A.; Saleel, C.A.; Badruddin, I.A.; Khan, T.Y.; Kamangar, S.; Mallick, Z.; Samuel, O.D.; Soudagar, M.E. Human thermal comfort in passenger vehicles using an organic phase change material– an experimental investigation, neural network modelling, and optimization. Build. Environ. 2020, 180, 107012. [Google Scholar] [CrossRef]
- Afzal, A.; Alshahrani, S.; Alrobaian, A.; Buradi, A.; Khan, S.A. Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms. Energies 2021, 14, 7254. [Google Scholar] [CrossRef]
- Afzal, A. Optimization of Thermal Management in Modern Electric Vehicle Battery Cells Employing Genetic Algorithm. J. Heat Transf. 2021, 143, 112902. [Google Scholar] [CrossRef]
- Afzal, A.; Yashawantha, K.M.; Aslfattahi, N.; Saidur, R.; Razak, R.K.A.; Subbiah, R. Back propagation modeling of shear stress and viscosity of aqueous Ionic-MXene nanofluids. J. Therm. Anal. 2021, 145, 2129–2149. [Google Scholar] [CrossRef]
- Mokashi, I.; Afzal, A.; Khan, S.A.; Abdullah, N.A.; Bin Azami, M.H.; Jilte, R.; Samuel, O.D. Nusselt number analysis from a battery pack cooled by different fluids and multiple back-propagation modelling using feed-forward networks. Int. J. Therm. Sci. 2021, 161, 106738. [Google Scholar] [CrossRef]
- Elumalai, P.V.; Moorthy, R.K.; Parthasarathy, M.; Samuel, O.D.; Owamah, H.I.; Saleel, C.A.; Enweremadu, C.C.; Reddy, M.S.; Afzal, A. Artificial neural networks model for predicting the behavior of different injection pressure characteristics powered by blend of biofuel-nano emulsion. Energy Sci. Eng. 2022, 10, 2367–2396. [Google Scholar] [CrossRef]
- Veza, I.; Afzal, A.; Mujtaba, M.; Hoang, A.T.; Balasubramanian, D.; Sekar, M.; Fattah, I.; Soudagar, M.; El-Seesy, A.I.; Djamari, D.; et al. Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine. Alex. Eng. J. 2022, 61, 8363–8391. [Google Scholar] [CrossRef]
- Bakır, H.; Ağbulut, Ů.; Gürel, A.E.; Yıldız, G.; Güvenç, U.; Soudagar, M.E.M.; Hoang, A.T.; Deepanraj, B.; Saini, G.; Afzal, A. Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms. J. Clean. Prod. 2022, 360, 131946. [Google Scholar] [CrossRef]
- Sharma, P.; Said, Z.; Kumar, A.; Nižetić, S.; Pandey, A.; Hoang, A.T.; Huang, Z.; Afzal, A.; Li, C.; Le, A.T.; et al. Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System. Energy Fuels 2022, 36, 6626–6658. [Google Scholar] [CrossRef]
- Sharma, J.; Soni, S.; Paliwal, P.; Saboor, S.; Chaurasiya, P.K.; Sharifpur, M.; Khalilpoor, N.; Afzal, A. A novel long term solar photovoltaic power forecasting approach using LSTM with Nadam optimizer: A case study of India. Energy Sci. Eng. 2022, 10, 2909–2929. [Google Scholar] [CrossRef]
- Ziaee, O.; Zolfaghari, N.; Baghani, M.; Baniassadi, M.; Wang, K. A modified cellular automaton model for simulating ion dynamics in a Li-ion battery electrode. Energy Equip. Syst. 2022, 10, 41–49. [Google Scholar]
- Taslimi, M.S.; Dastjerdi, S.M.; Mousavi, S.B.; Ahmadi, P.; Ashjaee, M. Assessment and multi-objective optimization of an off-grid solar based energy system for a Conex. Energy Equip. Syst. 2021, 9, 127–143. [Google Scholar] [CrossRef]
- Sharifi, M.; Amidpour, M.; Mollaei, S. Investigating carbon emission abatement long-term plan with the aim of energy system modeling; case study of Iran. Energy Equip. Syst. 2018, 6, 337–349. [Google Scholar] [CrossRef]
- Zare, S.; Ayati, M.; Ha’iri Yazdi, M.R.; Kabir, A.A. Convolutional neural networks for wind turbine gearbox health monitoring. Energy Equip. Syst. 2022, 10, 73–82. [Google Scholar]
- Sabzi, S.; Asadi, M.; Moghbelli, H. Review, analysis and simulation of different structures for hybrid electrical energy storages. Energy Equip. Syst. 2017, 5, 115–129. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Najm, S.M.; Lemu, H.G. Current Concepts for Cutting Metal-Based and Polymer-Based Composite Materials. J. Compos. Sci. 2022, 6, 150. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Najm, S.M.; Sbayti, M.; Belhadjsalah, H.; Szpunar, M.; Lemu, H.G. New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications. J. Compos. Sci. 2021, 5, 217. [Google Scholar] [CrossRef]
Parameters | Factor Levels | ||
---|---|---|---|
−1 | 0 | +1 | |
Load (N) | 60 | 70 | 80 |
Sliding Velocity (m/s) | 0.16 | 0.19 | 0.22 |
Sliding Distance (m) | 2500 | 3000 | 3500 |
Source | ANOVA for GFRPA66 30 wt.% | ANOVA for GFRPA66 35 wt.% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SS | df | MSq | F-Value | p-Value | SS | df | MSq | F-Value | p-Value | |
Model | 0.0203 | 9 | 0.0023 | 96.25 | <0.0001 | 0.2546 | 9 | 0.0283 | 44.54 | <0.0001 |
A | 0.0022 | 1 | 0.0022 | 94.51 | <0.0001 | 0.0513 | 1 | 0.0513 | 80.72 | <0.0001 |
B | 0.0052 | 1 | 0.0052 | 223.52 | <0.0001 | 0.0365 | 1 | 0.0365 | 57.54 | <0.0001 |
C | 0.0023 | 1 | 0.0023 | 98 | <0.0001 | 0.0874 | 1 | 0.0874 | 137.68 | <0.0001 |
AB | 0.0001 | 1 | 0.0001 | 4.79 | 0.0534 | 0.0001 | 1 | 0.0001 | 0.1771 | 0.6828 |
AC | 0.0045 | 1 | 0.0045 | 192.17 | <0.0001 | 0.0378 | 1 | 0.0378 | 59.53 | <0.0001 |
BC | 0 | 1 | 0 | 0.5323 | 0.4824 | 0.0010 | 1 | 0.0010 | 1.60 | 0.2353 |
A2 | 0.0016 | 1 | 0.0016 | 68.28 | <0.0001 | 0.0004 | 1 | 0.0004 | 0.6582 | 0.4361 |
B2 | 0.0016 | 1 | 0.0016 | 68.28 | <0.0001 | 0.0567 | 1 | 0.0567 | 89.34 | <0.0001 |
C2 | 0.0022 | 1 | 0.0022 | 94.88 | <0.0001 | 0.0053 | 1 | 0.0053 | 8.37 | 0.0160 |
Res | 0.0002 | 10 | 0 | 0.0064 | 10 | 0.0006 | ||||
Lack of Fit | 0.0001 | 5 | 0 | 0.7611 | 0.6141 | 0.0023 | 5 | 0.0005 | 0.5556 | 0.7327 |
Pure Error | 0.0001 | 5 | 0 | 0.0041 | 5 | 0.0008 | ||||
Cor Total | 0.0206 | 19 | 0.2610 | 19 | ||||||
Standard Deviation= 0.0048 R2 = 0.9886 | Adjusted R2 = 0.9783 Adeq Precision = 40.7828 | Standard Deviation= 0.0252 R2 = 0.9757 | Adjusted R2 = 0.9538 Adeq Precision = 23.4526 |
Source | ANOVA for GFRPA66 30 wt.% | ANOVA for GFRPA66 35 wt.% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SS | df | MSq | F-Value | p-Value | SS | df | MSq | F-Value | p-Value | |
Model | 0.0000 | 9 | 4.816 × 10−6 | 17411.57 | <0.0001 | 0.0209 | 9 | 0.0023 | 48.87 | <0.0001 |
A | 0.0000 | 1 | 0.0000 | 92934.97 | <0.0001 | 0.0000 | 1 | 0.0000 | 0.9939 | 0.3423 |
B | 1.103 × 10−6 | 1 | 1.103 × 10−6 | 3989.13 | <0.0001 | 0.0003 | 1 | 0.0003 | 6.59 | 0.0280 |
C | 0.0000 | 1 | 0.0000 | 59745.62 | <0.0001 | 0.0003 | 1 | 0.0003 | 6.84 | 0.0258 |
AB | 5.000 × 10−9 | 1 | 5.000 × 10−9 | 18.08 | 0.0017 | 0.0037 | 1 | 0.0037 | 78.42 | <0.0001 |
AC | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | 0.0034 | 1 | 0.0034 | 70.46 | <0.0001 |
BC | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | 0.0019 | 1 | 0.0019 | 40.00 | <0.0001 |
A2 | 3.624 × 10−13 | 1 | 3.624 × 10−13 | 0.0013 | 0.9718 | 0.0000 | 1 | 0.0000 | 0.5246 | 0.4855 |
B2 | 3.624 × 10−13 | 1 | 3.624 × 10−13 | 0.0013 | 0.9718 | 0.0089 | 1 | 0.0089 | 186.44 | <0.0001 |
C2 | 4.423 × 10−9 | 1 | 4.423 × 10−9 | 15.99 | 0.0025 | 2.795 × 10−6 | 1 | 2.795 × 10−6 | 0.0587 | 0.8134 |
Residual | 2.766 × 10−9 | 10 | 2.766 × 10−10 | 0.0005 | 10 | 0.0000 | ||||
Lack of Fit | 2.016 × 10−9 | 5 | 4.032 × 10−10 | 2.69 | 0.1509 | 0.0002 | 5 | 0.0000 | 0.8700 | 0.5589 |
Pure Error | 7.500 × 10−10 | 5 | 1.500 × 10−10 | 0.0003 | 5 | 0.0001 | ||||
Cor Total | 0.0000 | 19 | 0.0214 | 19 | ||||||
Standard Deviation = 0.00010 R2 = 0.9999 | Adjusted R2 = 0.9999 Adeq Precision = 468.7422 | Standard Deviation = 0.0069 R2 = 0.9778 | Adjusted R2 = 0.9578 Adeq Precision = 19.0151 | |||||||
MS—Sum of Square; df—Degree of Freedom; MSq—Mean Square; Res—Residual |
Polyamide | Values | Predicted | Experimental | Error |
---|---|---|---|---|
PA66GF Wt 35% | COF | 0.3401 | 0.3409 | 0.0008 |
SWR(m3/Nm) | 0.0122 | 0.0128 | 0.0006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagadeesan, N.; Selvaraj, A.; Nagaraja, S.; Abbas, M.; Saleel, C.A.; Aabid, A.; Baig, M. Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance. Materials 2022, 15, 6520. https://doi.org/10.3390/ma15196520
Jagadeesan N, Selvaraj A, Nagaraja S, Abbas M, Saleel CA, Aabid A, Baig M. Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance. Materials. 2022; 15(19):6520. https://doi.org/10.3390/ma15196520
Chicago/Turabian StyleJagadeesan, Narendran, Anthoniraj Selvaraj, Santhosh Nagaraja, Mohamed Abbas, C. Ahamed Saleel, Abdul Aabid, and Muneer Baig. 2022. "Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance" Materials 15, no. 19: 6520. https://doi.org/10.3390/ma15196520
APA StyleJagadeesan, N., Selvaraj, A., Nagaraja, S., Abbas, M., Saleel, C. A., Aabid, A., & Baig, M. (2022). Response Surface Methodology Based Optimization of Test Parameter in Glass Fiber Reinforced Polyamide 66 for Dry Sliding, Tribological Performance. Materials, 15(19), 6520. https://doi.org/10.3390/ma15196520