Mechanical Activation and Cation Site Disorder in MgAl2O4
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ianoş, R.; Lazǎu, I.; Pǎcurariu, C.; Barvinschi, P. Solution combustion synthesis of MgAl2O4 using fuel mixtures. Mater. Res. Bull. 2008, 43, 3408–3415. [Google Scholar] [CrossRef]
- Esposito, L.; Piancastelli, A.; Martelli, S. Production and characterization of transparent MgAl2O4 prepared by hot pressing. J. Eur. Ceram. Soc. 2013, 33, 737–747. [Google Scholar] [CrossRef]
- Obradović, N.; Fahrenholtz, W.G.; Filipović, S.; Corlett, C.; Đorđević, P.; Rogan, J.; Vulic, P.; Buljak, V.; Pavlović, V.B. Characterization of MgAl2O4 sintered ceramics. Sci. Sinter. 2019, 51, 363–376. [Google Scholar] [CrossRef]
- Obradović, N.; Fahrenholtz, W.G.; Filipović, S.; Kosanović, D.; Dapčević, A.; Đorđević, A.; Balać, I.; Pavlović, V.B. The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics. Ceram. Int. 2019, 45, 12015–12021. [Google Scholar] [CrossRef]
- Reimanis, I.; Kleebe, H.J. A review on the sintering and microstructure development of transparent spinel (MgAl2O4). J. Am. Ceram. Soc. 2009, 92, 1472–1480. [Google Scholar] [CrossRef]
- Sokol, M.; Halabi, M.; Kalabukhov, S.; Frage, N. Nano-structured MgAl2O4 spinel consolidated by high pressure spark plasma sintering (HPSPS). J. Eur Ceram. Soc. 2017, 37, 755–762. [Google Scholar] [CrossRef]
- Ye, G.; Troczynski, T. Mechanical activation of heterogeneous sol-gel precursors for synthesis of MgAl2O4 spinel. J. Am. Ceram. Soc. 2005, 88, 2970–2974. [Google Scholar] [CrossRef]
- Dwibedi, D.; Avdeev, M.; Barpanda, P. Role of Fuel on Cation Disorder in Magnesium Aluminate (MgAl2O4) Spinel Prepared by Combustion Synthesis. J. Am. Ceram. Soc. 2015, 98, 2908–2913. [Google Scholar] [CrossRef]
- Bratton, R.J. Co-precipitates yielding MgAl2O4 spinel powders. Am. Ceram. Soc. Bull. 1969, 48, 759–762. [Google Scholar]
- Li, J.G.; Ikegami, T.; Lee, J.H.; Mori, T.; Yajima, Y. A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder. Ceram. Int. 2001, 27, 481–489. [Google Scholar] [CrossRef]
- O’Quinn, E.C.; Shamblin, J.; Perlov, B.; Ewing, R.C.; Neuefeind, J.; Feygenson, M.; Gusssev, I.; Lang, M. Inversion in Mg1-xNixAl2O4 Spinel: New Insight into Local Structure. J. Am. Chem. Soc. 2017, 139, 10395–10402. [Google Scholar] [CrossRef] [PubMed]
- Torruella, P.; Ruiz-Caridad, A.; Walls, M.; Roca, A.G.; López-Ortega, A.; Blanco-Portals, J.; López-Conesa, L.; Nogués, J.; Peiró, F.; Estrade, S. Atomic-Scale Determination of Cation Inversion in Spinel-Based Oxide Nanoparticles. Nano Lett. 2018, 18, 5854–5861. [Google Scholar] [CrossRef] [PubMed]
- Sickafus, K.E.; Wills, J.M.; Grimes, N.W. Structure of spinel. J. Am. Ceram. Soc. 1999, 82, 3279–3292. [Google Scholar] [CrossRef]
- Toby, B.H. Investigations of zeolitic materials at the NIST center for neutron research. J. Res. Natl. Inst. Stand. Technol. 2001, 106, 965–973. [Google Scholar] [CrossRef]
- Abdi, M.S.; Ebadzadeh, T.; Ghaffari, A.; Feli, M. Synthesis of nano-sized spinel (MgAl2O4) from short mechanochemically activated chloride precursors and its sintering behavior. Adv. Powder Technol. 2015, 26, 175–179. [Google Scholar] [CrossRef]
- Kosanović, D.; Labus, N.J.; Živojinović, J.; Tadić, A.P.; Blagojević, V.A.; Pavlović, V.B. Effects of mechanical activation on the formation and sintering kinetics of barium strontium titanate ceramics. Sci Sinter. 2020, 52, 371–385. [Google Scholar] [CrossRef]
- Popova, N.A.; Lukin, E.S.; Pavlyukova, L.T.; Sevostyanov, M.A.; Leonov, A.V. Synthesis of alumomagnesian spinel by mechanical activation method. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 525. [Google Scholar] [CrossRef]
- Tavangarian, F.; Li, G. Mechanical activation assisted synthesis of nanostructure MgAl2O4 from gibbsite and lansfordite. Powder Technol. 2014, 267, 333–338. [Google Scholar] [CrossRef]
- Huq, A.; Kirkham, M.; Peterson, P.F.; Hodges, J.P.; Whitfield, P.S.; Page, K.; Hűgle, T.; Iverson, E.B.; Parizzi, A.; Rennich, G. POWGEN: Rebuild of a third-generation powder diffractometer at the Spallation Neutron Source. J. Appl. Crystallogr. 2019, 52, 1189–1201. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all-purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Yamanaka, T. Thermal Movement of Atoms in the Spinel Structure. J. Mineral. Soc. Jpn. 1983, 16, 221–231. [Google Scholar] [CrossRef]
- International Centre for Diffraction Data: ICDD. Available online: https://www.icdd.com/ (accessed on 4 December 2020).
- Toby, B.H. R factors in Rietveld analysis: How good is good enough? Powder Diffr. 2006, 21, 67–70. [Google Scholar] [CrossRef]
- Obradović, N.; Fahrenholtz, W.G.; Filipović, S.; Marković, S.; Blagojević, V.; Lević, S.; Savić, S.; Đorđević, A.; Pavlović, V. Formation kinetics and cation inversion in mechanically activated MgAl2O4 spinel ceramics. J. Therm. Anal. Calorim. 2020, 140, 95–107. [Google Scholar] [CrossRef]
TOF (μs) | d-Spacing (Å) | Miller Index | RI (%) |
---|---|---|---|
105,287.0 | 4.6677 | 111 | 7.27 |
64,554.0 | 2.8584 | 220 | 13.23 |
55,060.7 | 2.4376 | 311 | 23.81 |
52,692.5 | 2.3339 | 222 | 42.17 |
45,631.5 | 2.0212 | 400 | 58.99 |
41,924.3 | 1.8548 | 331 | 4.90 |
37,246.8 | 1.6503 | 422 | 6.49 |
35,135.6 | 1.5559 | 511 | 34.54 |
32,255.5 | 1.4292 | 440 | 100.00 |
Designation | Phase RF/RF2(%) | Al1 (%) | Mg2 (%) | Mg1 (%) | Al2 (%) | Mg | Inversion Parameter (i) |
---|---|---|---|---|---|---|---|
XD1200C | 2.46/3.93 | 18.53 | 81.47 | 9.14 | 90.86 | 7.98 | 0.185 |
XD1300C | 2.36/3.53 | 14.98 | 85.02 | 7.44 | 92.56 | 7.99 | 0.149 |
XD1400C | 2.45/3.98 | 13.19 | 86.81 | 6.45 | 93.55 | 7.98 | 0.132 |
XD1500C | 2.66/3.88 | 13.02 | 86.98 | 6.33 | 93.67 | 7.97 | 0.130 |
MA1200C | 2.59/4.14 | 12.37 | 87.63 | 5.98 | 94.02 | 7.97 | 0.124 |
MA1300C | 2.62/4.47 | 7.47 | 92.53 | 3.48 | 96.52 | 7.96 | 0.075 |
MA1400C | 2.67/4.44 | 7.41 | 92.59 | 3.45 | 96.55 | 7.96 | 0.075 |
MA1500C | 2.78/4.29 | 9.72 | 90.28 | 4.69 | 95.31 | 7.97 | 0.097 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corlett, C.A.; Frontzek, M.D.; Obradovic, N.; Watts, J.L.; Fahrenholtz, W.G. Mechanical Activation and Cation Site Disorder in MgAl2O4. Materials 2022, 15, 6422. https://doi.org/10.3390/ma15186422
Corlett CA, Frontzek MD, Obradovic N, Watts JL, Fahrenholtz WG. Mechanical Activation and Cation Site Disorder in MgAl2O4. Materials. 2022; 15(18):6422. https://doi.org/10.3390/ma15186422
Chicago/Turabian StyleCorlett, Cole A., Matthias D. Frontzek, Nina Obradovic, Jeremy L. Watts, and William G. Fahrenholtz. 2022. "Mechanical Activation and Cation Site Disorder in MgAl2O4" Materials 15, no. 18: 6422. https://doi.org/10.3390/ma15186422
APA StyleCorlett, C. A., Frontzek, M. D., Obradovic, N., Watts, J. L., & Fahrenholtz, W. G. (2022). Mechanical Activation and Cation Site Disorder in MgAl2O4. Materials, 15(18), 6422. https://doi.org/10.3390/ma15186422