Diffusion of Copper Ions in the Lattice of Substituted Hydroxyapatite during Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanochemical Synthesis
3.2. In Situ Diffraction
3.2.1. The 0.0Cu Sample
3.2.2. The 0.5Cu-Ca Sample
3.2.3. The 0.5Cu-OH Sample
3.3. Crystal Structure of the Cu-HA Samples after High-Temperature Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorozhkin, S.V. Calcium orthophospates (CaPO4): Occurrence and properties. Prog. Biomater. 2016, 5, 9–70. [Google Scholar] [CrossRef] [Green Version]
- Mucalo, M. Hydroxyapatite (HAp) for Biomedical Applications; Woodhead Publishing Limited: Waltham, MA, USA, 2015; pp. 1–364. [Google Scholar]
- Kenny, S.M.; Buggy, M. Bone cements and fillers: A review. J. Mater. Sci. Mater. Med. 2003, 14, 923. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Supova, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015, 41, 9203–9231. [Google Scholar] [CrossRef]
- Jacobs, A.; Renaudin, G.; Forestier, C.; Nedelec, J.; Descamps, S. Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects. Acta Biomater. 2020, 117, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Tite, T.; Popa, A.-C.; Balescu, L.M.; Bogdan, I.M.; Pasuk, I.; Ferreira, J.M.F.; Stan, G.E. Cationic substitutions in hydroxyapatite: Current status of the derived biofunctional effects and their in vitro interrogation methods. Materials 2018, 11, 2081. [Google Scholar] [CrossRef] [Green Version]
- Othmani, M.; Bachoua, H.; Ghandour, Y.; Aissa, A.; Debbabi, M. Synthesis, characterization and catalytic properties of copper-substituted hydroxyapatite nanocrystals. Mater. Res. Bull. 2018, 97, 560–566. [Google Scholar] [CrossRef]
- Bulina, N.; Vinokurova, O.; Eremina, N.; Prosanov, I.; Khusnutdinov, V.; Chaikina, M. Features of solid-phase mechanochemical synthesis of hydroxyapatite doped by copper and zinc ions. J. Solid State Chem. 2021, 296, 121973. [Google Scholar] [CrossRef]
- Renaudin, G.; Gomes, S.; Nedelec, J.M. First-Row Transition Metal Doping in Calcium Phosphate. Bioceramics: A Detailed Crystallographic Study. Materials 2017, 10, 92. [Google Scholar] [CrossRef] [Green Version]
- Gomes, S.; Vichery, C.; Descamps, S.; Martinez, H.; Kaur, A.; Jacobs, A.; Nedelec, J.M.; Renaudin, G. Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity. Acta Biomater. 2018, 65, 462–474. [Google Scholar] [CrossRef]
- Baikie, T.; Ng, M.H.; Madhavi, S.; Pramana, S.S.; Blake, K.; Elcombe, M.; White, T.J. The crystal chemistry of the alkaline-earth apatites A10(PO4)6CuxOy(H)z (A = Ca, Sr and Ba). Dalton Trans. 2009, 34, 6722–6728. [Google Scholar] [CrossRef]
- Karpov, A.S.; Nuss, J.; Jansen, M.; Kazin, P.E.; Tretyakov, Y.D. Synthesis, crystal structure and properties of calcium and barium hydroxyapatites containing copper ions in hexagonal channels. Solid State Sci. 2003, 5, 1277–1283. [Google Scholar] [CrossRef]
- Imrie, F.E.; Skakle, J.M.S.; Gibson, I.R. Preparation of Copper-Doped Hydroxyapatite with Varying x in the Composition Ca10(PO4)6CuxOyHz. Bioceram. Dev. Appl. 2013, 1, 2013. [Google Scholar] [CrossRef] [Green Version]
- Pogosova, M.A.; Provotorov, D.I.; Eliseev, A.A.; Kazin, P.E.; Jansen, M. Synthesis and characterization of the Bi-for-Ca substituted copper-based apatite pigments. Dye. Pigment. 2015, 113, 96–101. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Fang, Y.; Hooper, T.J.N.; Kelly, N.L.; Gupta, D.; Balani, K.; Manna, I.; Baikie, T.; Bishop, P.T.; White, T.J.; et al. Crystal Chemistry and Antibacterial Properties of Cupriferous Hydroxyapatite. Materials 2019, 12, 1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avvakumov, E.G.; Potkin A., R.; Samarin, O.I. Planetary Mill. Patent 975068 USSR, 1982. [Google Scholar]
- Chaikina, M.V.; Bulinaa, N.V.; Vinokurova, O.B.; Prosanov, I.Y.; Dudina, D.V. Interaction of calcium phosphates with calcium oxide or calcium hydroxide during the “soft” mechanochemical synthesis of hydroxyapatite. Ceram. Int. 2019, 45, 16927–16933. [Google Scholar] [CrossRef]
- Harilal, M.; Saikiran, A.; Rameshbabu, N. Experimental investigation on synthesis of nanocrystalline hydroxyapatite by the mechanochemical method. Key Eng. Mater. 2018, 775, 149–155. [Google Scholar] [CrossRef]
- Bulina, N.V.; Chaikina, M.V.; Andreev, A.S.; Lapina, O.B.; Ishchenko, A.V.; Prosanov, I.Y.; Gerasimov, K.B.; Solovyov, L.A. Mechanochemical synthesis of SiO44−-substituted hydroxyapatite, Part II—Reaction mechanism, structure, and substitution limit. Eur. J. Inorg. Chem. 2014, 28, 4810–4825. [Google Scholar] [CrossRef]
- Wilson, R.M.; Elliott, J.C.; Dowker, S.E.P.; Smith, R.I. Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 2004, 25, 2205–2213. [Google Scholar] [CrossRef]
- Tõnsuaadu, K.; Gross, K.A.; Plūduma, L.; Veiderma, M.A. A review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 2012, 110, 647–659. [Google Scholar] [CrossRef]
- Bulina, N.V.; Makarova, S.V.; Baev, S.G.; Matvienko, A.A.; Gerasimov, K.B.; Logutenko, O.A.; Bystrov, V.S. A Study of Thermal Stability of Hydroxyapatite. Minerals 2021, 11, 1310. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Gerasimov, K.B.; Yoon, S.K. Ball temperatures during mechanical alloying in planetary mills. J. Alloys Compd. 2002, 346, 276–281. [Google Scholar] [CrossRef]
- Lazoryak, B.I.; Khan, N.; Morozov, V.A.; Belik, A.A.; Khasanov, S.S. Preparation, structure determination, and redox characteristics of new calcium copper phosphates. J. Solid State Chem. 1999, 145, 345–355. [Google Scholar] [CrossRef]
- Destainville, A.; Champion, E.; Bernache-Assollant, D.; Laborde, E. Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater. Chem. Phys. 2003, 80, 269–277. [Google Scholar] [CrossRef]
- Chaikina, M.V.; Bulina, N.V.; Vinokurova, O.B.; Prosanov, I.Y. Synthesis of Stoichiometric and Substituted β-Tricalciumphosphate Using Mechanochemistry. Chem. Sustain. Dev. 2020, 1, 71–76. [Google Scholar] [CrossRef]
- Bohner, M.; Santoni, L.B.G.; Döbelin, N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020, 113, 23–41. [Google Scholar] [CrossRef]
- Kazin, P.E.; Zykin, M.A.; Zubavichus, Y.V.; Magdysyuk, O.V.; Dinnebier, R.E.; Jansen, M. Identification of the chromophore in the apatite pigment [Sr10(PO4)6(CuxOH1−x−y)2]: Linear OCuO− featuring a resonance raman effect, an extreme magnetic anisotropy, and slow spin relaxation. Chem. Eur. J. 2014, 20, 165–178. [Google Scholar] [CrossRef]
Reaction ID | Reaction | K | Sample Name | |
---|---|---|---|---|
Ca/P | (Ca + Cu)/P | |||
1 | 6CaHPO4 + 4CaO → Ca10(PO4)6(OH)2 + 2H2O | 1.67 | 1.67 | 0.0Cu |
2 | 6CaHPO4 + 3.5CaO + 0.5CuO → Ca9.5Cu0.5(PO4)6(OH)2 + 2H2O | 1.58 | 1.67 | 0.5Cu-Ca |
3 | 6CaHPO4 + 4CaO + 0.5CuO → Ca10(PO4)6(OH)1Cu0.5O + 2.5H2O | 1.67 | 1.75 | 0.5Cu-OH |
Sample Name | a (Å) | c (Å) | Crystallite Size (nm) |
---|---|---|---|
0.0Cu | 9.437 (1) | 6.892 (1) | 24.9 (2) |
0.5Cu-Ca | 9.435 (1) | 6.881 (1) | 20.2 (2) |
0.5Cu-OH | 9.432 (2) | 6.887 (1) | 20.2 (2) |
Temp. (°C) | Impurity Phases in the Samples | |||||||
---|---|---|---|---|---|---|---|---|
0.5Cu-Ca (Ca + Cu)/P = 1.67 | 0.5Cu-OH (Ca + Cu)/P = 1.75 | |||||||
β-Ca3(PO4)2 | CuO | β-Ca3(PO4)2 | CuO | |||||
C (wt%) | CS (nm) | C (wt%) | CS (nm) | C (wt%) | CS (nm) | C (wt%) | CS (nm) | |
500 | – | – | – | – | – | – | – | – |
600 | – | – | – | – | – | – | 2.8 (2) | 15.8 (5) |
700 | – | – | 1.1 (3) | 52 (17) | – | – | 3.5 (3) | 19.2 (4) |
800 | 17.0 (8) | 134 (9) | 2.4 (4) | 45 (8) | – | – | 3.5 (2) | 32.1 (4) |
900 | 25.6 (8) | 220 (26) | 2.0 (3) | 105 (22) | – | – | 3.5 (2) | 32.0 (4) |
1000 | 27.0 (8) | 288 (22) | 0.7 (4) | 77 (49) | – | – | 2.9 (2) | 56.2 (8) |
1100 | 30.9 (5) | 444 (43) | – | – | – | – | – | – |
1200 | 33.7 (5) | 593 (66) | – | – | – | – | – | – |
500 | – | – | – | – | – | – | – | – |
Sample Name | ||||
---|---|---|---|---|
0.0Cu | 0.5Cu-Ca | 0.5Cu-OH | ||
HA-1/HA-2 * | C (wt%) | 100 | 70.2 (6) | 58.2 (4)/40.8 (4) |
a (Å) | 9.4224 (1) | 9.4274 (3) | 9.4281 (6)/9.4318 (4) | |
c (Å) | 6.8843 (1) | 6.9006 (3) | 6.8922 (5)/6.9058 (4) | |
Crystallite size (nm) | 384 (25) | 139 (3) | 199 (8)/362 (28) | |
Cu occupancy | – | 0.34 (2) | 0.14 (2)/0.62 (4) | |
Calculated chemical formula | Ca10(PO4)6(OH)2 | Ca10(PO4)6(OH)1.32Cu0.34O0.68 | Ca10(PO4)6(OH)1.72Cu0.14O0.28/Ca10(PO4)6(OH)0.76Cu0.62O1.24 | |
β-Ca3(PO4)2 | C (wt%) | – | 29.2 (6) | – |
a (Å) | – | 10.4050 (7) | – | |
c (Å) | – | 37.426 (3) | – | |
Crystallite size (nm) | – | 127 (7) | – | |
CuO | C (wt%) | – | 0.6 (3) | 1.0 (4) |
Crystallite size (nm) | – | 170 (65) | 58 (16) | |
Reliability factor Rwp | 5.2 | 5.8 | 4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulina, N.V.; Eremina, N.V.; Vinokurova, O.B.; Ishchenko, A.V.; Chaikina, M.V. Diffusion of Copper Ions in the Lattice of Substituted Hydroxyapatite during Heat Treatment. Materials 2022, 15, 5759. https://doi.org/10.3390/ma15165759
Bulina NV, Eremina NV, Vinokurova OB, Ishchenko AV, Chaikina MV. Diffusion of Copper Ions in the Lattice of Substituted Hydroxyapatite during Heat Treatment. Materials. 2022; 15(16):5759. https://doi.org/10.3390/ma15165759
Chicago/Turabian StyleBulina, Natalia V., Natalya V. Eremina, Olga B. Vinokurova, Arcady V. Ishchenko, and Marina V. Chaikina. 2022. "Diffusion of Copper Ions in the Lattice of Substituted Hydroxyapatite during Heat Treatment" Materials 15, no. 16: 5759. https://doi.org/10.3390/ma15165759