A Study of Erosion–Corrosion Behaviour of Friction Stir-Processed Chromium-Reinforced NiAl Bronze Composite
Abstract
:1. Introduction
2. Experimentation
2.1. Materials and Friction Stir Processing
2.2. Surface Characterization
2.3. Slurry Erosion–Corrosion Testing
2.4. Static Immersion Corrosion
2.5. Electrochemical Testing
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Slurry Erosion–Corrosion Test
3.3. Static Immersion Corrosion
3.4. Electrochemical Corrosion Results
4. Conclusions
- The normalized intensity ratio (NIR) of phases for Cu, NiAl/Fe3Al, and CrO2 were obtained as 67.63%, 21.03%, and 11.33%, respectively, from an XRD analysis of the FSPed composite.
- The chromium-reinforced NAB composite showed a lower corrosion rate in the erosive–corrosive condition than the as-cast NAB alloy due to grain refinement in the microstructure and annihilation of the casting porosities. The weight losses in both the as-cast NAB and FSPed composite increased as the impact angle was reduced from 90° to 30°. The shear stress was predominantly at low values of the impact angle, resulting in the removal of oxide film from the surface.
- The FSP sample had a substantially lowered static immersion corrosion rate than the as-cast NAB sample owing to grain size refinement, a reduction in the casting porosities, the formation of a Cr oxide film, and the alleviation of κ phase segregation. The corrosion rate of the as-cast NAB and FSP composite specimens decreased with an increase in the corrosion period before reaching a steady level.
- The FSPed specimen had the highest Ecorr and the lowest Icorr, exhibiting the best corrosion resistance, according to the electrochemical results. With the addition of chromium using the FSP to as-cast NAB, the EIS results improved, indicating the formation of a modified oxide film with decreased pore density. The electrochemical impedance of the FSPed composite was much higher than that of the as-cast NAB, as the coating generated on the composite expanded quickly and was more protective.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Lian, Y.; Sun, Y. Synergistic Effect Between Cavitation Erosion and Corrosion for Friction Stir Processed NiAl Bronze in Artificial Seawater. Met. Mater. Int. 2021, 27, 5082–5094. [Google Scholar] [CrossRef]
- Finnie, I. Erosion of Surfaces by Solid Particles. Wear 1960, 3, 87–103. [Google Scholar] [CrossRef]
- Segovia, E.G.; de Vera, G.; Miró, M.; Ramis, J.; Climent, M.A. Cement Mortar Cracking under Accelerated Steel Corrosion Test: A Mechanical and Electrochemical Model. J. Electr. Chem. 2021, 896, 115222. [Google Scholar] [CrossRef]
- Wood, R.J.K. Erosion-Corrosion Interactions and Their Effect on Marine and Offshore Materials. Wear 2006, 261, 1012–1023. [Google Scholar] [CrossRef]
- Stack, M.M.; Zhou, S.; Newman, R.C. Identification of Transitions in Erosion-Corrosion Regimes in Aqueous Environments. Wear 1995, 186–187, 523–532. [Google Scholar] [CrossRef]
- Wood, R.J.K.; Hutton, S.P. The Synergistic Effect of Erosion and Corrosion: Trends in Published Results. Wear 1990, 140, 387–394. [Google Scholar] [CrossRef]
- Javaheri, V.; Porter, D.; Kuokkala, V.T. Slurry Erosion of Steel–Review of Tests, Mechanisms and Materials. Wear 2018, 408–409, 248–273. [Google Scholar] [CrossRef]
- Lindgren, M.; Perolainen, J. Slurry Pot Investigation of the Influence of Erodant Characteristics on the Erosion Resistance of Titanium. Wear 2014, 321, 64–69. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, A.; Tyagi, R. Erosive Wear Analysis of Medium Carbon Dual Phase Steel under Dry Ambient Condition. Wear 2015, 334–335, 91–98. [Google Scholar] [CrossRef]
- Wong, C.Y.; Solnordal, C.; Graham, L.; Short, G.; Wu, J. Slurry Erosion of Surface Imperfections in Pipeline Systems. Wear 2015, 336–337, 72–85. [Google Scholar] [CrossRef]
- Rao, K.V.S.; Girisha, K.G.; Rakesh, Y.D. Evaluation of Slurry Erosion Wear Characteristic of Plasma Sprayed TiO2 Coated 410 Steel. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012067. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.S.; Wharton, J.A.; Wood, R.J.K. Solid Particle Erosion-Corrosion Behaviour of a Novel HVOF Nickel Aluminium Bronze Coating for Marine Applications-Correlation between Mass Loss and Electrochemical Measurements. Wear 2005, 258, 629–640. [Google Scholar] [CrossRef]
- Barik, R.C.; Wharton, J.A.; Wood, R.J.K.; Tan, K.S.; Stokes, K.R. Erosion and Erosion-Corrosion Performance of Cast and Thermally Sprayed Nickel-Aluminium Bronze. Wear 2005, 259, 230–242. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Steel, K.; Veidt, M.; Heitzmann, M. Wear Behaviour of Polymeric Materials Reinforced with Man-Made Fibres: A Comprehensive Review about Fibre Volume Fraction Influence on Wear Performance. J. Reinf. Plast. Compos. 2021, 41, 215–241. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.; Mahmoud, M.; Zaghloul, Y.; Mahmoud, M.; Zaghloul, Y. Influence of Stress Level and Fibre Volume Fraction on Fatigue Performance of Glass Fibre-Reinforced Polyester Composites. Polymers 2022, 14, 2662. [Google Scholar] [CrossRef]
- Brownlie, F.; Hodgkiess, T.; Pearson, A.; Galloway, A.M. A Study on the Erosion-Corrosion Behaviour of Engineering Materials Used in the Geothermal Industry. Wear 2021, 477, 203821. [Google Scholar] [CrossRef]
- Luo, Q.; Qin, Z.; Wu, Z.; Shen, B.; Liu, L.; Hu, W. The Corrosion Behavior of Ni-Cu Gradient Layer on the Nickel Aluminum-Bronze (NAB) Alloy. Corros. Sci. 2018, 138, 8–19. [Google Scholar] [CrossRef]
- Pan, L.; Kwok, C.T.; Lo, K.H. Friction-Stir Processing of AISI 440C High-Carbon Martensitic Stainless Steel for Improving Hardness and Corrosion Resistance. J. Mater. Process. Technol. 2020, 277, 116448. [Google Scholar] [CrossRef]
- Ni, D.R.; Xiao, B.L.; Ma, Z.Y.; Qiao, Y.X.; Zheng, Y.G. Corrosion Properties of Friction-Stir Processed Cast NiAl Bronze. Corros. Sci. 2010, 52, 1610–1617. [Google Scholar] [CrossRef]
- Li, Y.; Lian, Y.; Sun, Y. Cavitation Erosion Behavior of Friction Stir Processed Nickel Aluminum Bronze. J. Alloys Compd. 2019, 795, 233–240. [Google Scholar] [CrossRef]
- Lotfollahi, M.; Shamanian, M.; Saatchi, A. Effect of Friction Stir Processing on Erosion-Corrosion Behavior of Nickel-Aluminum Bronze. Mater. Des. 2014, 62, 282–287. [Google Scholar] [CrossRef]
- Song, Q.N.; Zheng, Y.G.; Ni, D.R.; Ma, Z.Y. Corrosion and Cavitation Erosion Behaviors of Friction Stir Processed Ni-Al Bronze: Effect of Processing Parameters and Position in the Stirred Zone. Corrosion 2014, 70, 261–270. [Google Scholar] [CrossRef]
- Li, Y.; Lian, Y.; Sun, Y. Comparison of Cavitation Erosion Behaviors between the As-Cast and Friction Stir Processed Ni–Al Bronze in Distilled Water and Artificial Seawater. J. Mater. Res. Technol. 2021, 13, 906–918. [Google Scholar] [CrossRef]
- Thapliyal, S.; Dwivedi, D.K. On Cavitation Erosion Behavior of Friction Stir Processed Surface of Cast Nickel Aluminium Bronze. Wear 2017, 376–377, 1030–1042. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, L.; Xu, X.; Han, Y.; Lu, W. Investigation of the Microstructure and Corrosion Properties of Friction Stir Processed Cast NiAl Bronze. Mater. Trans. 2015, 56, 1523–1529. [Google Scholar] [CrossRef] [Green Version]
- Abbasi-Khazaei, B.; Keshavarz, S. Nickel-Aluminum-Bronze/Al2O3 Surface Nanocomposite Produced by Friction-Stir Processing: Corrosion Properties and Microstructure. Mater. Corros. 2017, 68, 883–891. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, Y.F.; Liu, L.; Lv, W.; Hu, W. Effect of Heat Treatment on Microstructure Evolution and Erosion-Corrosion Behavior of a Nickel-Aluminum Bronze Alloy in Chloride Solution. Corros. Sci. 2015, 98, 260–270. [Google Scholar] [CrossRef]
- Wiengmoon, A.; Pearce, J.T.H.; Chairuangsri, T. Relationship between Microstructure, Hardness and Corrosion Resistance in 20 Wt.%Cr, 27 Wt.%Cr and 36 Wt.%Cr High Chromium Cast Irons. Mater. Chem. Phys. 2011, 125, 739–748. [Google Scholar] [CrossRef]
- Hu, S.; Mao, Y.; Liu, X.; Han, E.H.; Hänninen, H. Intergranular Corrosion Behavior of Low-Chromium Ferritic Stainless Steel without Cr-Carbide Precipitation after Aging. Corros. Sci. 2020, 422, 127527. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Li, G.; Zheng, M.; Li, Y.; Zhang, A.; Zhang, Y. Microstructure and Flow Accelerated Corrosion Resistance of Cr Coatings Electrodeposited in a Trivalent Chromium Bath. Surf. Coatings Technol. 2021, 422, 127527. [Google Scholar] [CrossRef]
- Mardanifar, A.; Mohseni, A.; Mahdavi, S. Wear and Corrosion of Co-Cr Coatings Electrodeposited from a Trivalent Chromium Solution: Effect of Heat Treatment Temperature. Surf. Coat. Technol. 2021, 422, 127535. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, R.; Li, Y.; Zhao, L. A High Strength and High Electrical Conductivity Cu-Cr-Zr Alloy Fabricated by Cryogenic Friction Stir Processing and Subsequent Annealing Treatment. Mater. Sci. Eng. A 2019, 755, 166–169. [Google Scholar] [CrossRef]
- Naik, R.B.; Reddy, K.V.; Reddy, G.M.; Kumar, R.A. Development of High Strength and High Electrical Conductivity Cu-Cr-Zr Alloy through Friction Stir Processing. Fusion Eng. Des. 2020, 161, 111962. [Google Scholar] [CrossRef]
- Bheekya Naik, R.; Venkateswara Reddy, K.; Madhusudhan Reddy, G.; Arockia Kumar, R. Microstructure, Mechanical and Wear Properties of Friction Stir Processed Cu-1.0%Cr Alloys. Fusion Eng. Des. 2021, 164, 112202. [Google Scholar] [CrossRef]
- Qin, Z.; Luo, Q.; Zhang, Q.; Wu, Z.; Liu, L.; Shen, B.; Hu, W. Improving Corrosion Resistance of Nickel-Aluminum Bronzes by Surface Modification with Chromium Ion Implantation. Surf. Coat. Technol. 2018, 334, 402–409. [Google Scholar] [CrossRef]
- Peng, D.Q.; Bai, X.D.; Yu, R.H.; Chen, X.W.; Zhou, Q.G.; Liu, X.Y.; Deng, P.Y. Role of Chromium Ion Implantation on the Corrosion Behavior of Zirconium in 1N H 2 SO 4. Appl. Surf. Sci. 2004, 230, 73–80. [Google Scholar] [CrossRef]
- Hirvonen, J.P.; Rück, D.; Yan, S.; Mahiout, A.; Torri, P.; Likonen, J. Corrosion Resistance of N-, Cr- or Cr + N-Implanted AISI 420 Stainless Steel. Surf. Coat. Technol. 1995, 74–75, 760–764. [Google Scholar] [CrossRef]
- Abreu, C.M.; Cristóbal, M.J.; Figueroa, R.; Pena, G. Influence of Molybdenum Ion Implantation on the Localized Corrosion Resistance of a High Strength Aluminium Alloy. Corros. Sci. 2012, 54, 143–152. [Google Scholar] [CrossRef]
- Emmerich, R.; Wolf, G.K.; Buhl, H.; Braun, R. On the Influence of Ion-Induced Surface Modification on Localized Corrosion of Aluminium. Surf. Coat. Technol. 1995, 1043–1047. [Google Scholar] [CrossRef]
- Davis, J.R. Corrosion: Understanding the Basics; ASM International: Almere, The Netherlands, 2000; Volume 2. [Google Scholar]
- ASTM G31-72 (1999); Standard Practice for Laboratory Immersion Corrosion Testing of Metals. Annual Book of ASTM Standards: Philadelphia, PA, USA, 2004.
- Singh, J.; Thakur, L.; Angra, S. Comparative Analysis of Micrometric and Nano-Metric WC-10Co-4Cr GTA Cladding. Eng. Res. Express 2022, 4, ac7439. [Google Scholar] [CrossRef]
- Ni, D.R.; Xue, P.; Wang, D.; Xiao, B.L.; Ma, Z.Y. Inhomogeneous Microstructure and Mechanical Properties of Friction Stir Processed NiAl Bronze. Mater. Sci. Eng. A 2009, 524, 119–128. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Lloyd, D.J. Particle Reinforced Aluminium and Magnesium Matrix Composites. Int. Mater. Rev. 1994, 39, 1–23. [Google Scholar] [CrossRef]
- Hanke, S.; Beyer, M.; Dos Santos, J.F.; Fischer, A. Friction Surfacing of a Cold Work Tool Steel-Microstructure and Sliding Wear Behavior. Wear 2013, 308, 180–185. [Google Scholar] [CrossRef]
- Sekharbabu, R.; Rafi, H.K.; Rao, K.P. Characterization of D2 Tool Steel Friction Surfaced Coatings over Low Carbon Steel. Mater. Des. 2013, 50, 543–550. [Google Scholar] [CrossRef]
- Pereira, D.; Gandra, J.; Pamies-Teixeira, J.; Miranda, R.M.; Vilaça, P. Wear Behaviour of Steel Coatings Produced by Friction Surfacing. J. Mater. Process. Technol. 2014, 214, 2858–2868. [Google Scholar] [CrossRef]
- Burstein, G.T.; Daymond, B.T. The Remarkable Passivity of Austenitic Stainless Steel in Sulphuric Acid Solution and the Effect of Repetitive Temperature Cycling. Corros. Sci. 2009, 51, 2249–2252. [Google Scholar] [CrossRef]
- Cai, B.; Liu, Y.; Tian, X.; Wang, F.; Li, H.; Ji, R. An Experimental Study of Crevice Corrosion Behaviour of 316L Stainless Steel in Artificial Seawater. Corros. Sci. 2010, 52, 3235–3242. [Google Scholar] [CrossRef]
- Wharton, J.A.; Stokes, K.R. The Influence of Nickel-Aluminium Bronze Microstructure and Crevice Solution on the Initiation of Crevice Corrosion. Electrochim. Acta 2008, 53, 2463–2473. [Google Scholar] [CrossRef]
- Wharton, J.A.; Barik, R.C.; Kear, G.; Wood, R.J.K.; Stokes, K.R.; Walsh, F.C. The Corrosion of Nickel-Aluminium Bronze in Seawater. Corros. Sci. 2005, 47, 3336–3367. [Google Scholar] [CrossRef]
- Kear, G.; Barker, B.D.; Walsh, F.C. Electrochemical Corrosion of Unalloyed Copper in Chloride Media--a Critical Review. Corros. Sci. 2004, 46, 109–135. [Google Scholar] [CrossRef]
- Schossler, A.; Exner, H.E. The Passivation Mechanism. Corros. Sci. 1993, 34, 1793–1802. [Google Scholar]
- Schüssler, A.; Exner, H.E. The Corrosion of Nickel-Aluminium Bronzes in Seawater-II. The Corrosion Mechanism in the Presence of Sulphide Pollution. Corros. Sci. 1993, 34, 1803–1811. [Google Scholar] [CrossRef]
- Ferrara, R.J.; Caton, T.E. Review of De-Alloy of Cast-Aluminum Bronze and Nickel–Aluminum Bronze Alloys in Sea-Water Service. Mater. Perform. 1982, 21, 30–34. [Google Scholar]
- Kear, G.; Barker, B.D.; Stokes, K.; Walsh, F.C. Flow Influenced Electrochemical Corrosion of Nickel Aluminium Bronze-Part II. Anodic Polarisation and Derivation of the Mixed Potential. J. Appl. Electrochem. 2004, 34, 1241–1248. [Google Scholar] [CrossRef]
- Kear, G.; Barker, B.D.; Stokes, K.; Walsh, F.C. Flow Influenced Electrochemical Corrosion of Nickel Aluminium Bronze-Part I. Cathodic Polarisation. J. Appl. Electrochem. 2004, 34, 1235–1240. [Google Scholar] [CrossRef]
- Surekha, K.; Murty, B.S.; Prasad Rao, K. Effect of Processing Parameters on the Corrosion Behaviour of Friction Stir Processed AA 2219 Aluminum Alloy. Solid State Sci. 2009, 11, 907–917. [Google Scholar] [CrossRef]
- Surekha, K.; Murty, B.S.; Rao, K.P. Microstructural Characterization and Corrosion Behavior of Multipass Friction Stir Processed AA2219 Aluminium Alloy. Surf. Coat. Technol. 2008, 202, 4057–4068. [Google Scholar] [CrossRef]
- Mishra, R.; Balasubramaniam, R. Effect of Nanocrystalline Grain Size on the Electrochemical and Corrosion Behavior of Nickel. Corros. Sci. 2004, 46, 3019–3029. [Google Scholar] [CrossRef]
- Kazum, O.; Bobby Kannan, M.; Beladi, H.; Timokhina, I.B.; Hodgson, P.D.; Khoddam, S. Aqueous Corrosion Performance of Nanostructured Bainitic Steel. Mater. Des. 2014, 54, 67–71. [Google Scholar] [CrossRef]
- Milošev, I.; Metikoš-Huković, M. The Behaviour of Cu-XNi (x = 10 to 40 wt.%) Alloys in Alkaline Solutions Containing Chloride Ions. Electrochim. Acta 1997, 42, 1537–1548. [Google Scholar] [CrossRef]
- Badawy, W.A.; Al-Kharafi, F.M.; El-Azab, A.S. Electrochemical Behaviour and Corrosion Inhibition of Al, Al-6061 and Al-Cu in Neutral Aqueous Solutions. Corros. Sci. 1999, 41, 709–727. [Google Scholar] [CrossRef]
- Szczygieł, B.; Kołodziej, M. Composite Ni/Al2O3 Coatings and Their Corrosion Resistance. Electrochim. Acta 2005, 50, 4188–4195. [Google Scholar] [CrossRef]
- Chen, J.L.; Li, Z.; Zhu, A.Y.; Luo, L.Y.; Liang, J. Corrosion Behavior of Novel Imitation-Gold Copper Alloy with Rare Earth in 3.5% NaCl Solution. Mater. Des. 2012, 34, 618–623. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.; Zhu, A.; Zhao, Y.; Chen, J.; Zhu, Y. Surface Characterization and Corrosion Behavior of a Novel Gold-Imitation Copper Alloy with High Tarnish Resistance in Salt Spray Environment. Corros. Sci. 2013, 76, 42–51. [Google Scholar] [CrossRef]
- Li, C.; Pan, Q.; Shi, Y.; Wang, Y.; Li, B. Influence of Aging Temperature on Corrosion Behavior of Al-Zn-Mg-Sc-Zr Alloy. Mater. Des. 2014, 55, 551–559. [Google Scholar] [CrossRef]
S. No. | Phase | I1 | I2 | I3 | Iback | NIR (%) |
---|---|---|---|---|---|---|
1 | Cu | 37.96 | 3.34 | 67.63 | ||
2 | NiAl/Fe3Al | 14.11 | 3.34 | 21.03 | ||
3 | CrO2 | 9.14 | 3.34 | 11.33 |
Impact Angle (Degree) | Weight Loss (Mg) | |
---|---|---|
As-Cast NAB | FSPed Composite | |
30 | 9.417 | 6.633 |
60 | 8.368 | 5.306 |
90 | 7.74 | 4.286 |
Specimen | Ecorr (V) | Rp (Ω·cm2) | ba (mV·dec−1) | bc (mV·dec−1) | Icorr (µA/cm2) |
---|---|---|---|---|---|
As-cast NAB | −0.2800 | 2462 | 126.9 | 247.9 | 14.81 |
FSP-prepared composite | −0.2405 | 5095 | 94.7 | 273.4 | 5.994 |
Specimen | R1 (Ω) | R2 (Ω) | Q2 (F. s (a−1)) | W (Ω cm2) |
---|---|---|---|---|
As-cast NAB | 45.5 | 695 | 0.1534 × 10−3 | 126.5 |
FSP composite | 46.92 | 1425 | 0.2323 × 10−3 | 189.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutta, V.; Thakur, L.; Singh, B.; Vasudev, H. A Study of Erosion–Corrosion Behaviour of Friction Stir-Processed Chromium-Reinforced NiAl Bronze Composite. Materials 2022, 15, 5401. https://doi.org/10.3390/ma15155401
Dutta V, Thakur L, Singh B, Vasudev H. A Study of Erosion–Corrosion Behaviour of Friction Stir-Processed Chromium-Reinforced NiAl Bronze Composite. Materials. 2022; 15(15):5401. https://doi.org/10.3390/ma15155401
Chicago/Turabian StyleDutta, Varun, Lalit Thakur, Balbir Singh, and Hitesh Vasudev. 2022. "A Study of Erosion–Corrosion Behaviour of Friction Stir-Processed Chromium-Reinforced NiAl Bronze Composite" Materials 15, no. 15: 5401. https://doi.org/10.3390/ma15155401
APA StyleDutta, V., Thakur, L., Singh, B., & Vasudev, H. (2022). A Study of Erosion–Corrosion Behaviour of Friction Stir-Processed Chromium-Reinforced NiAl Bronze Composite. Materials, 15(15), 5401. https://doi.org/10.3390/ma15155401