Magnetite Nanoparticles In-Situ Grown and Clustered on Reduced Graphene Oxide for Supercapacitor Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fe3O4/RGO Nanocomposites
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Zhou, H.; Jin, B.; Gao, W.; Lang, X.; Li, J.; Jiang, Q. Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe 2 embellished nitrogen-doped hollow carbon spheres as polysulfide barriers. J. Mater. Chem. A 2021, 9, 3451–3463. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, M.; Zhao, R.; Li, Y.; Zhang, B.; Zhang, Y.; Lang, X.; Zhu, Y.; Jiang, Q. 3D hierarchical self-supported NiO/Co3O4@ C/CoS2 nanocomposites as electrode materials for high-performance supercapacitors. Nanoscale Adv. 2020, 2, 2785–2791. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, Y.; Chen, H.; Ling, Y. In situ exsolved Co–Fe nanoparticles on the Ruddlesden-Popper-type symmetric electrodes for intermediate temperature solid oxide fuel cells. Ceram. Int. 2020, 46, 18331–18338. [Google Scholar] [CrossRef]
- Lokhande, P.E.; Chavan, U.S.; Pandey, A. Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochem. Energy Rev. 2019, 3, 155–186. [Google Scholar] [CrossRef]
- Hu, C.-C.; Chang, K.-H.; Lin, A.M.-C.; Wu, Y.-T. Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors. Nano Lett. 2006, 6, 2690–2695. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.-S.; Ameen, S.; Akhtar, M.S.; Shin, H.-S. Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram. Int. 2018, 44, 588–595. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, S.; Chen, X.; Tang, T.; Klingeler, R.; Mijowska, E. Ultrathin NiO confined within hollow carbon sphere for efficient electrochemical energy storage. J. Alloys Compd. 2019, 797, 702–709. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, S.; Jiang, H.; Qu, F.; Wu, X. Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J. Mater. Chem. A 2015, 3, 5722–5729. [Google Scholar] [CrossRef]
- Zeng, X.; Yang, B.; Li, X.; Li, R.; Yu, R. Solvothermal synthesis of hollow Fe3O4 sub-micron spheres and their enhanced electrochemical properties for supercapacitors. Mater. Des. 2016, 101, 35–43. [Google Scholar] [CrossRef]
- Manikandan, N.; Lakshmi, B.; Shivakumara, S. Preparation of self-assembled porous flower-like nanostructured magnetite (Fe3O4) electrode material for supercapacitor application. J. Solid State Electrochem. 2022, 26, 887–895. [Google Scholar] [CrossRef]
- Ma, J.; Guo, X.; Yan, Y.; Xue, H.; Pang, H. FeOx-based materials for electrochemical energy storage. Adv. Sci. 2018, 5, 1700986. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Sure, J.; Vishnu, D.S.M.; Jo, S.J.; Lee, W.C.; Ahmad, I.A.; Kim, H.K. Nano-Fe3O4/carbon nanotubes composites by one-pot microwave solvothermal method for supercapacitor applications. Energies 2021, 14, 2908. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Zhuang, S.; Wang, X.; Tu, F. Synthesis of carbon-coated Fe3O4 nanorods as electrode material for supercapacitor. Ionics 2013, 19, 1255–1261. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.K.; Vaz, A.R.; Savu, R.; Moshkalev, S.A. Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 2017, 9, 8880–8890. [Google Scholar] [CrossRef]
- Das, A.K.; Sahoo, S.; Arunachalam, P.; Zhang, S.; Shim, J.J. Facile synthesis of Fe3O4 nanorod decorated reduced graphene oxide (RGO) for supercapacitor application. RSC Adv. 2016, 6, 107057–107064. [Google Scholar] [CrossRef]
- Satapathy, S.; Prabakaran, P.; Prasad, E. Augmenting Photoinduced Charge Transport in a Single-Component Gel System: Controlled In Situ Gel–Crystal Transformation at Room Temperature. Chem. Eur. J. 2018, 24, 6217–6230. [Google Scholar] [CrossRef]
- Satapathy, S.; Prasad, E. Charge Transfer Modulated Self-Assembly in Poly (aryl ether) Dendron Derivatives with Improved Stability and Transport Characteristics. ACS Appl. Mater. Interfaces 2016, 8, 26176–26189. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, J.; Ou, X. Facile synthesis of Fe3O4 nanowires at low temperature (80 C) without autoclaves and their electromagnetic performance. Mater. Lett. 2017, 209, 48–51. [Google Scholar] [CrossRef]
- Shu, T.; Gao, H.; Li, Q.; Wei, F.; Ren, Y.; Sun, Z.; Qi, J.; Sui, Y. One-step phosphating synthesis of CoP nanosheet arrays combined with Ni2P as a high-performance electrode for supercapacitors. Nanoscale 2020, 12, 20710–20718. [Google Scholar] [CrossRef]
- Sheng, S.; Liu, W.; Zhu, K.; Cheng, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. Fe3O4 nanospheres in situ decorated graphene as high-performance anode for asymmetric supercapacitor with impressive energy density. J. Colloid Interface Sci. 2018, 536, 235–244. [Google Scholar] [CrossRef]
- Khan, A.J.; Khan, A.; Javed, M.S.; Arshad, M.; Asim, S.; Khalid, M.; Siyal, S.H.; Hussain, S.; Hanif, M.; Liu, Z. Surface assembly of Fe3O4 nanodiscs embedded in reduced graphene oxide as a high-performance negative electrode for supercapacitors. Ceram. Int. 2020, 46, 19499–19505. [Google Scholar] [CrossRef]
- Ma, J.; Shi, N.; Jia, J. Fe3O4 nanospheres decorated reduced graphene oxide as anode to promote extracellular electron transfer efficiency and power density in microbial fuel cells. Electrochimica Acta 2020, 362, 137126. [Google Scholar] [CrossRef]
- Zhang, H.; Han, J.; Xu, J.; Ling, Y.; Ou, X. Self-assembled NiCo2O4 microspheres for hybrid supercapacitor applications. J. Mater. Sci. 2022, 57, 5566–5576. [Google Scholar] [CrossRef]
- Zhao, X.; Jia, Y.; Liu, Z.-H. GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors. J. Colloid Interface Sci. 2019, 536, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Madhuvilakku, R.; Alagar, S.; Mariappan, R.; Piraman, S. Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications. Sens. Actuators B Chem. 2017, 253, 879–892. [Google Scholar] [CrossRef]
- Rosaiah, P.; Zhu, J.; Hussain, O.M.; Qiu, Y. Facile and cost-effective synthesis of flower-like RGO/Fe3O4 nanocomposites with ultra-long cycling stability for supercapacitors. Ionics 2019, 25, 655–664. [Google Scholar] [CrossRef]
- Qi, M.; Zhu, W.; Lu, Z.; Zhang, H.; Ling, Y.; Ou, X. Synthesis of nickel sulfide–graphene oxide composite microflower structures to enhance supercapacitor performance. J. Mater. Sci. Mater. Electron. 2020, 31, 12536–12545. [Google Scholar] [CrossRef]
- Prabakaran, P.; Satapathy, S.; Prasad, E.; Sankararaman, S. Architecting pyrediyne nanowalls with improved inter-molecular interactions, electronic features and transport characteristics. J. Mater. Chem. C 2018, 6, 380–387. [Google Scholar] [CrossRef]
Materials | Morphology | Specific Capacitance (F g−1) | Electrolyte | Stability | Ref. |
---|---|---|---|---|---|
Fe3O4 | Hollow microspheres | 294 (0.5 A g−1) | 8 M KOH | 90.8% after 500 cycles | [9] |
Fe3O4 | Microflowers | 183 (1.0 A g−1) | 0.5 M Na2SO3 | 65.0% after 5000 cycles | [10] |
Fe3O4 | Nanoparticles | 383.2 (0.5 A g−1) | 1 M Na2SO3 | 83.6% after 2000 cycles | [11] |
Fe3O4 | Nanoparticles | 169.1 (0.5 A g−1) | 1 M KOH | 69.2% after 5500 cycles | This work |
Fe3O4/C | Nanoparticles/Nanotubes | 187.1 (1.0 A g−1) | 1 M Na2SO3 | 80.2% after 1000 cycles | [12] |
Fe3O4/C | Nanorods/Nanoparticles | 275.9 (0.5 A g−1) | 1 M Na2SO3 | 81.2% after 500 cycles | [13] |
Fe3O4/RGO | Nanosheets/Nanosheets | 297.0 (4.4 A g−1) | 2 M KOH | 91.4% after 9600 cycles | [14] |
Fe3O4/RGO | Nanorods/Nanosheets | 315 (5.0 A g−1) | 1 M KOH | 95.0% after 2000 cycles | [15] |
Fe3O4/RGO | Nanodiscs/Nanosheets | 1149 (1.5 A g−1) | 6 M KOH | 97.5% after 10,000 cycles | [21] |
Fe3O4/RGO | Nanoflowers/Nanosheets | 454.3 (1.0 A g−1) | 2 M KOH | 94.0% after 10,000 cycles | [26] |
Fe3O4/RGO | Nanoparticles/Nanosheets | 317.4 (0.5 A g−1) | 1 M KOH | 86.9% after 5500 cycles | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Han, J.; Wei, X.; Zhang, H.; Zhang, Z.; Ren, L. Magnetite Nanoparticles In-Situ Grown and Clustered on Reduced Graphene Oxide for Supercapacitor Electrodes. Materials 2022, 15, 5371. https://doi.org/10.3390/ma15155371
Jiang Y, Han J, Wei X, Zhang H, Zhang Z, Ren L. Magnetite Nanoparticles In-Situ Grown and Clustered on Reduced Graphene Oxide for Supercapacitor Electrodes. Materials. 2022; 15(15):5371. https://doi.org/10.3390/ma15155371
Chicago/Turabian StyleJiang, Yue, Jinxun Han, Xiaoqin Wei, Hanzhuo Zhang, Zhihui Zhang, and Luquan Ren. 2022. "Magnetite Nanoparticles In-Situ Grown and Clustered on Reduced Graphene Oxide for Supercapacitor Electrodes" Materials 15, no. 15: 5371. https://doi.org/10.3390/ma15155371
APA StyleJiang, Y., Han, J., Wei, X., Zhang, H., Zhang, Z., & Ren, L. (2022). Magnetite Nanoparticles In-Situ Grown and Clustered on Reduced Graphene Oxide for Supercapacitor Electrodes. Materials, 15(15), 5371. https://doi.org/10.3390/ma15155371