Implant—Abutment Misfit after Cyclic Loading: An In Vitro Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermomechanical Cycling
2.2. Evaluation of the Implant/Abutment Interface Misfit
2.3. Compressive Load Test
2.4. Scanning Electron Microscopy
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Mechanical cycling could increase the misfit at the interface for the complete cast angled abutments;
- Mechanical cycling could reduce the compressive strength for the overcast and completely cast angled abutments;
- Independent of cycling, overcast abutment showed better mechanical behavior than completely cast abutment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atzeni, E.; Bassoli, E.; Denti, L.; Gatto, A.; Iuliano, L.; Minetola, P.; Salmi, A. Tolerance analysis for cast vs machined dental implants. Procedia CIRP 2015, 33, 263–268. [Google Scholar] [CrossRef] [Green Version]
- França, D.G.B.; Morais, M.H.S.T.; Neves, F.D.; Barbosa, G.A.S. Influence of CAD/CAM on the fit accuracy of implant-supported zirconia and cobalt-chromium fixed dental prostheses. J. Prosthet. Dent. 2015, 113, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Butignon, L.E.; Basílio, M.A.; Pereira, R.P.; Arioli Filho, J.N. Influence of Three Types of Abutments on Preload Values Before and After Cyclic Loading with Structural Analysis by Scanning Electron Microscopy. Int. J. Oral Maxillofac. Implant. 2013, 28, 161–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gracias, S.; Michalakis, K.; Vigolo, P.; Steyer, P.V.; Zwahlen, M.; Sailer, I. Internal vs. external connections for abutments/reconstructions: A systematic review. Clin. Oral Implant. Res. 2012, 23, 202–216. [Google Scholar] [CrossRef]
- Diez, J.S.V.; Brigagão, V.C.; Cunha, L.G.; Neves, A.C.C.; Silva-Concílio, L.R. Influence of Diamond like Carbon–Coated Screws on the Implant-Abutment Interface. Int. J. Oral Maxillofac. Implant. 2012, 27, 1055–1060. [Google Scholar]
- Gupta, V.B.D.S.; Prithviraj, D.R.; Muley, N. A new restorative technique for the perishing implant due to abutment screw fracture. J. Oral Implantol. 2014, 40, 755–757. [Google Scholar] [CrossRef]
- Jörn, D.; Kohorst, P.; Besdo, S.; Rücker, M.; Stiesch, M.; Borchers, L. Influence of lubricant on screw preload and stresses in a finite element model for a dental implant. J. Prosthet. Dent. 2014, 112, 340–348. [Google Scholar] [CrossRef]
- Cho, W.R.; Huh, Y.H.; Park, C.J.; Cho, L.R. Effect of cyclic loading and retightening on reverse torque value in external and internal implants. J. Adv. Prosthodont. 2015, 7, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Moris, I.C.M.; Faria, A.C.L.; Ribeiro, R.F.; Rodrigues, R.C.S. Torque loss of different abutment sizes before and after cyclic loading. Int. J. Oral Maxillofac. Implant. 2015, 30, 1256–1261. [Google Scholar] [CrossRef]
- Said-Zadeh, R.; Kutkut, A.; Kim, H. Prosthetic Failure in Implant Dentistry. Dent. Clin. N. Am. 2015, 59, 195–214. [Google Scholar] [CrossRef]
- Kim, K.S.; Lim, Y.J.; Kim, M.J.; Kwon, H.B.; Yang, J.H.; Lee, J.B.; Yim, S.H. Variation in the total lengths of abutment/implant assemblies gene rated with a function of applied tightening torque in external and internal implant-abutment connection. Clin. Oral Impl. Res. 2011, 22, 834–839. [Google Scholar] [CrossRef]
- Sannino, G.; Barlattani, A. Mechanical Evaluation of an Implant-Abutment Self-Locking Taper Connection: Finite Element Analysis and Experimental Tests. Int. J. Oral Maxillofac. Implant. 2013, 28, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Bernardes, S.R.; Mattos, M.G.C.; Hobkirk, J.; Ribeiro, R.F. Loss of Preload in Screwed Implant Joints as a Function of Time and Tightening/Untightening Sequences. Int. J. Oral Maxillofac. Implant. 2014, 29, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Gil, F.J.; Herrero-Climent, M.; Lázaro, M.P.; Rios, J.V. Implant–abutment connections: Influence of the design on the micro gap and their fatigue and fracture behavior of dental implants. J. Mater. Sci. Mater. Med. 2014, 25, 1825–1830. [Google Scholar] [CrossRef] [PubMed]
- Tsouknidas, A.; Lympoudi, E.; Michalakis, K.; Giannopoulos, D.; Michailidis, N.; Pissiotis, A.; Fytanidis, D.; Kugiumtzis, D. Influence of alveolar bone loss and different alloys on the biomechanical behavior of internal-and external-connection implants: A three-dimensional finite element analysis. Int. J. Oral Maxillofac. Implant. 2015, 30, 30–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozkomur, A.; Ucar, Y.; Ekren, O.; Shinkai, R.S.A.; Teixeira, E.R. Characterization of the interface between cast-to Co-Cr implant cylinders and cast Co-Cr alloys. J. Prosthet. Dent. 2015, 30, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, D.A.; Hagee, N.; Lee, D.J.; Zheng, F. The behavior of a zirconia or metal abutment on the implant-abutment interface during cyclic loading. J. Prosthet. Dent. 2020, 124, 211–216. [Google Scholar] [CrossRef]
- Assunção, W.G.; Barão, V.A.R.; Delben, J.A.; Gomes, E.A.; Garcia Jr, I.R. Effect of unilateral misfit on preload of retention screws of implant-supported prostheses submitted to mechanical cycling. W.G. J. Prosthodont. Res. 2011, 55, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Michalakis, K.X.; Calvani, P.L.; Muftu, S.; Pissiotis, A.; Hirayama, H. The effect of different implant-abutment connections on screwjoint stability. J. Oral Implantol. 2014, 40, 146–152. [Google Scholar] [CrossRef]
- Camargos, G.D.V.; Prado, C.J.; Neves, F.D.R.; Sartori, I.A.M. Clinical Outcomes of Single Dental Implants with External Connections: Results After 2 to 13 Years. Int. J. Oral Maxillofac. Implant. 2012, 27, 935–944. [Google Scholar]
- Faria, R.; May, L.G.; Vasconcellos, D.K.; Volpato, C.A.M.; Bottino, M.A. Evaluation of the bacterial leakage along with the implant-abutment interface. J. Dent. Implant. 2011, 1, 51. [Google Scholar] [CrossRef]
- Khongkhunthian, P.; Khongkhunthian, S.; Weerawatprachya, W.; Pongpat, K.; Aunmeungtong, W. Comparative study of torque resistance and micro gaps between a combined Octatorx-cone connection and an internal hexagon implant-abutment connection. J. Prosthet. Dent. 2015, 113, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Cosyn, J.; Van Aelst, L.; Collaert, B.; Persson, G.R.; De Bruyn, H. The Peri-Implant Sulcus Compared with Internal Implant and Suprastructure Components: A Microbiological Analysis. Clin. Implant. Dent. Relat. Res. 2011, 13, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Baixe, S.; Fauxpoint, G.; Arntz, Y.; Etienne, O. Micro gap between zirconia abutments and titanium implants. Int. J. Oral Maxillofac. Implant. 2010, 25, 455–460. [Google Scholar]
- Farina, A.P.; Spazzin, A.O.; Consani, R.L.X.; Mesquita, M.F. Screw joint stability after the application of retorquing in implant-supported dentures under simulated masticatory conditions. J. Prosthet. Dent. 2014, 111, 499–504. [Google Scholar] [CrossRef]
- Ha, C.Y.; Lim, Y.J.; Kim, M.J.; Choi, J.H. The influence of abutment angulation on screw loosening of implants in the anterior maxilla. Int. J. Oral Maxillofac. Implant. 2011, 26, 45–55. [Google Scholar]
- Assunção, W.G.; Jorge, J.R.P.; Santos, P.H.; Barão, V.A.; Gomes, E.A.; Delben, J.A. The Effect of Mechanical Cycling and Different Misfit Levels on Vicker’s Micro hardness of Retention Screws for Single Implant-Supported Prostheses. J. Prosthodont. 2011, 20, 523–527. [Google Scholar] [CrossRef]
- Semper, W.; Kraft, S.; Mehrhof, J.; Nelson, K. Impact of abutment rotation and angulation on marginal fit: Theoretical considerations. Int. J. Oral Maxillofac. Implant. 2010, 25, 752–758. [Google Scholar]
- Alvarez-Arenal, A.; Segura-Mori, L.; Gonzalez-Gonzalez, I.; Gago, A. Stress Distribution in the Abutment and Retention Screw of a Single Implant Supporting a Prosthesis with Platform Switching. Int. J. Oral Maxillofac. Implant. 2013, 28, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.T.; Fu, J.H.; Al-Hezaimi, K.; Wang, H.L. Biomechanical Implant Treatment Complications: A Systematic Review of Clinical Studies of Implants with at Least 1 Year of Functional Loading. Int. J. Oral Maxillofac. Implant. 2012, 27, 894–904. [Google Scholar]
- Siadat, H.; Pirmoazen, S.; Beyabanaki, E.; Alikhasi, M. Does abutment collar length affect abutment screw loosening after cyclic loading? J Oral Implantol. 2015, 41, 346–351. [Google Scholar] [CrossRef]
- Francis, L.; Zeenath, H.; Lylajam, S.; Harshakumar, K. Implant screw fracture. J. Dent. Implant. 2013, 3, 181. [Google Scholar] [CrossRef]
- Jorge, J.R.P.; Barão, V.A.R.; Delben, J.A.; Assunção, W.G. The Role of Implant/Abutment System on torque Maintenance of Retention Screws and vertical Misfit of Implant-Supported Crowns Before and After Mechanical Cycling. Int. J. Oral Maxillofac. Implant. 2013, 28, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, B.; Salaita, L.G.; Seidt, J.D.; Clelland, N.L.; McGlumphy, E.A. Load to failure of different titanium abutments for an internal hexagon implant. J. Prosthet. Dent. 2015, 114, 513–516. [Google Scholar] [CrossRef]
- Nascimento, C.N.; Miani, P.K.; Pedrazzi, V.; Gonçalves, R.B.; Ribeiro, R.F.; Faria, A.C.L.; Macedo, A.P.; Albuquerque Junior, R.F. Leakage of Saliva Through the Implant-Abutment Interface: In Vitro Evaluation of Three Different Implant Connections Under Unloaded and Loaded Conditions. Int. J. Oral Maxillofac. Implant. 2012, 27, 551–560. [Google Scholar]
- Blum, K.; Wiest, W.; Fella, C.; Balles, A.; Dittmann, J.; Rack, A.; Maier, D.; Thomann, R.; Spies, B.C.; Kohal, R.J.; et al. Fatigue induced changes in conical implant-abutment connections. Dent. Mater. 2015, 31, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.; Ikeda, L.; Pita, M.S.; Silva, R.C.P.; Pedrazzi, V.; Albuquerque Junior, R.F.; Ribeiro, R.F. Marginal fit and microbial leakage along with the implant-abutment interface of fixed partial prostheses: An in vitro analysis using Checkerboard DNA-DNA hybridization. J. Prosthet. Dent. 2015, 114, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Lin, H.; Yuan, S.; Bai, W.; Zheng, G. Dynamic fatigue performance of implant-abutment assemblies with different tightening torque values. Bio-Med. Mater. Eng. 2014, 24, 2143–2149. [Google Scholar] [CrossRef] [Green Version]
- Park, J.K.; Choi, J.U.; Jeon, Y.C.; Choi, K.S.; Jeong, C.M. Effects of Abutment Screw Coating on Implant Preload. J. Prosthodont. 2010, 19, 458–464. [Google Scholar] [CrossRef]
- Cashman, P.M.; Schneider, R.L.; Schneider, G.B.; Stanford, M.; James, M.; Clancy, J.M.; Qian, F. In Vitro Analysis of Post–fatigue Reverse-Torque Values the Dental Abutment/Implant Interface for a Unitarian Abutment Design. J. Prosthodont. 2011, 20, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Bulaqi, H.A.; Mashhadi, M.M.; Geramipanah, F.; Safari, H.; Paknejad, M. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method. J. Prosthet. Dent. 2015, 113, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Lepesqueur, L.S.S.; Figueiredo, V.M.G.; Ferreira, L.L.; Sobrinho, A.S.S.; Massi, M.; Bottino, M.A.; Nogueira Junior, L. Coating Dental Implant Abutment Screws with Diamondlike Carbon Doped with Diamond Nanoparticles: The Effect on Maintaining Torque After Mechanical Cycling. Int. J. Oral Maxillofac. Implant. 2015, 30, 1310–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, M.B.; Pegoraro, L.F.; Takamori, E.; Coelho, P.G.; Silva, T.L.; Bonfante, E.A. Evaluation of UCLA Implant-Abutment Sealing. Int. J. Oral Maxillofac. Implant. 2014, 29, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaguti, G.; Denti, L.; Bassoli, E.; Franchi, I.; Bortolini, S.; Gatto, A. Dimensional Tolerances and Assembly Accuracy of Dental Implants and Machined Versus Cast-On Abutments. Clin. Implant. Dent. Relat. Res. 2011, 13, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Kahramanoglu, E.; Kulak-Ozkan, Y. Marginal and Internal Adaptation of Different Superstructure and Abutment Materials Using Two Different Implant Systems for Five-Unit Implant-Supported Fixed Partial Dentures: An In Vitro Study. Int. J. Oral Maxillofac. Implant. 2013, 28, 1207–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehrke, S.A.; Pereira, F.A. Changes in the abutment-implant interface in Morse taper implant connections after mechanical cycling: A pilot study. Int. J. Oral Maxillofac. Implant. 2014, 29, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, T.A.P.N.; Prudente, M.S.; Pessoa, R.S.; Mendonça, G.; Neves, F.D. A conservative approach to retrieve a fractured abutment screw–A case report. J. Prosthodont. Res. 2015, 30, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Aguirrebeitia, J.; Abasolo, M.; Vallejo, J.; Angola, R. Dental Implants with Conical Implant-Abutment Interface: Influence of the Conical Angle Difference on the Mechanical Behavior of the Implant. Int. J. Oral Maxillofac. Implant. 2013, 28, 72–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christ, A. Two Implant/Abutment Joint Designs: A Comparative Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2013, 28, 83–87. [Google Scholar]
- Almeida, E.O.; Freitas Jr, A.C.; Bonfante, E.A.; Marotta, L.; Silva, N.R.F.A.; Coelho, P.G. Mechanical Testing of Implant-Supported Anterior Crowns with Different Implant /Abutment Connections. Int. J. Oral Maxillofac. Implant. 2013, 28, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seetoh, Y.L.; Tan, K.B.; Chua, E.K.; Quek, H.C.; Nicholls, J.I. Load fatigue performance of conical implant-abutment connections. Int. J. Oral Maxillofac. Implant. 2011, 26, 797–806. [Google Scholar]
- Imam, A.Y.; Moshaverinia, A.; McGlumphy, E.A. Implant-abutment interface: A comparison of the ultimate force to failure among narrow-diameter implant systems. J. Prosthet. Dent. 2014, 112, 136–142. [Google Scholar] [CrossRef] [PubMed]
Groups | N | 4.1 Platform Dental Implant (mm) | Abutment | Used Material | Method | Submitted to Thermomechanical Cycling |
---|---|---|---|---|---|---|
A | 10 | 3.75 × 13 mm P-I Branemark, Zimmer Holdings® | anti-rotational Co-Cr-Mo custom dental implant abutment | Ni–-Cr alloy | Induction technic | Yes |
B | 10 | 3.75 × 13 mm P-I Branemark, Zimmer Holdings® | anti-rotational Co-Cr-Mo custom dental implant abutment | Ni–Cr alloy | Induction technic | No |
C | 10 | 3.75 × 13 mm P-I Branemark, Zimmer Holdings® | anti-rotational custom dental implant abutment | Ni–Cr alloy | Conventional (lost wax) | Yes |
D | 10 | 3.75 × 13 mm P-I Branemark, Zimmer Holdings® | anti-rotational custom dental implant abutment | Ni–Cr alloy | Conventional (lost wax) | No |
UCLA Abutment | Implant/Abutment Misfit (µm) | Compressive Strength (Kgf) | ||
---|---|---|---|---|
without Cycling | Plus Cycling | without Cycling | Plus Cycling | |
Overcast | 9.1 (3.6) Aa | 6.7 (2.5) Aa | 160.4 (27.7) Aa | 122.8 (17.1) Ab |
Completely cast | 6.9 (1.9) Aa | 17.1 (4.3) Bb | 137.2 (30.6) Ba | 98.3 (17.5) Bb |
Failure Mode | Cr–Co–Mo Metal Strap | Calcinable Plastic | ||
---|---|---|---|---|
without Cycling | Plus Cycling | without Cycling | Plus Cycling | |
Implant Fracture | 0% | 0% | 0% | 0% |
Screw fracture—first thread | 0% | 0% | 0% | 0% |
Screw fracture—central threads | 0% | 0% | 0% | 0% |
Screw fracture—most apical thread | 0% | 0% | 0% | 0% |
Screw plastic deformation (no fracture) | 90% | 100% | 90% | 90% |
Abutment misfit | 90% | 90% | 90% | 100% |
Abutment shearing | 60% | 20% | 0% | 0% |
Abutment loosening | 50% | 10% | 0% | 0% |
Implant platform deformation | 80% | 100% | 80% | 70% |
Implant external hexagon deformation | 40% | 50% | 30% | 60% |
Implant internal hexagon deformation | 0% | 0% | 0% | 0% |
There were no visible deformations | 10% | 0% | 0% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Vasconcelos, J.E.L.; de Matos, J.D.M.; Queiroz, D.A.; Lopes, G.d.R.S.; de Lacerda, B.C.G.V.; Bottino, M.A.; Turssi, C.P.; Basting, R.T.; do Amaral, F.L.B.; França, F.M.G. Implant—Abutment Misfit after Cyclic Loading: An In Vitro Experimental Study. Materials 2022, 15, 5341. https://doi.org/10.3390/ma15155341
de Vasconcelos JEL, de Matos JDM, Queiroz DA, Lopes GdRS, de Lacerda BCGV, Bottino MA, Turssi CP, Basting RT, do Amaral FLB, França FMG. Implant—Abutment Misfit after Cyclic Loading: An In Vitro Experimental Study. Materials. 2022; 15(15):5341. https://doi.org/10.3390/ma15155341
Chicago/Turabian Stylede Vasconcelos, John Eversong Lucena, Jefferson David Melo de Matos, Daher Antonio Queiroz, Guilherme da Rocha Scalzer Lopes, Bruna Caroline Gonçalves Vasconcelos de Lacerda, Marco Antonio Bottino, Cecilia Pedroso Turssi, Roberta Tarkany Basting, Flávia Lucisano Botelho do Amaral, and Fabiana Mantovani Gomes França. 2022. "Implant—Abutment Misfit after Cyclic Loading: An In Vitro Experimental Study" Materials 15, no. 15: 5341. https://doi.org/10.3390/ma15155341
APA Stylede Vasconcelos, J. E. L., de Matos, J. D. M., Queiroz, D. A., Lopes, G. d. R. S., de Lacerda, B. C. G. V., Bottino, M. A., Turssi, C. P., Basting, R. T., do Amaral, F. L. B., & França, F. M. G. (2022). Implant—Abutment Misfit after Cyclic Loading: An In Vitro Experimental Study. Materials, 15(15), 5341. https://doi.org/10.3390/ma15155341