Influence of the Electron Beam and the Choice of Heating Membrane on the Evolution of Si Nanowires’ Morphology in In Situ TEM
Abstract
1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Yu, L.; Misra, S.; Fan, Z.; Pareige, P.; Patriarche, G.; Bouchoule, S.; Roca i Cabarrocas, P. Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth. Nat. Commun. 2014, 5, 4134. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Pareige, P.; Roca i Cabarrocas, P. Three-dimensional atomic mapping of hydrogenated polymorphous silicon solar cells. Appl. Phys. Lett. 2016, 108, 253110. [Google Scholar] [CrossRef]
- Saka, H.; Kamino, T.; Ara, S.; Sasaki, K. In situ heating transmission electron microscopy. MRS Bull. 2008, 33, 93–100. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, D. Behaviour of TEM metal grids during in-situ heating experiments. Ultramicroscopy 2009, 109, 766–774. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Jiang, C.; Zhao, K.; Chen, H.; Shi, X.; Chen, L.; Sun, C.; Zhang, S.; Wang, Y.; et al. Nanoscale Behavior and Manipulation of the Phase Transition in Single-Crystal Cu2Se. Adv. Mater. 2019, 31, 1804919. [Google Scholar] [CrossRef]
- Asano, S.; Engel, B.D.; Baumeister, W. In situ cryo-electron tomography: A post-reductionist approach to structural biology. J. Mol. Biol. 2016, 428, 332–343. [Google Scholar] [CrossRef]
- McDowall, A.; Smith, J.; Dubochet, J. Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J. 1986, 5, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shan, H.; Chen, W.; Gu, X.; Tao, P.; Song, C.; Shang, W.; Deng, T. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 2016, 28, 9686–9712. [Google Scholar] [CrossRef]
- Wagner, J.B.; Cavalca, F.; Damsgaard, C.D.; Duchstein, L.D.; Hansen, T.W. Exploring the environmental transmission electron microscope. Micron 2012, 43, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zhu, B.; Fang, K.; Li, X.-Y.; Hansen Thomas, W.; Ou, Y.; Yang, H.; Wagner Jakob, B.; Gao, Y.; Wang, Y.; et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation. Science 2021, 371, 517–521. [Google Scholar] [CrossRef]
- Yuan, W.; Zhu, B.; Li, X.-Y.; Hansen Thomas, W.; Ou, Y.; Fang, K.; Yang, H.; Zhang, Z.; Wagner Jakob, B.; Gao, Y.; et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020, 367, 428–430. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Sheng, L.; Wang, X.; Yuan, W.; Chen, S.; Xue, W.; Han, G.; Zhang, Z.; Yang, H.; Lu, Y.; et al. Oxide Catalysts with Ultrastrong Resistance to SO2 Deactivation for Removing Nitric Oxide at Low Temperature. Adv. Mater. 2019, 31, 1903719. [Google Scholar] [CrossRef] [PubMed]
- Le Ferrand, H.; Duchamp, M.; Gabryelczyk, B.; Cai, H.; Miserez, A. Time-resolved observations of liquid–liquid phase separation at the nanoscale using in situ liquid transmission electron microscopy. J. Am. Chem. Soc. 2019, 141, 7202–7210. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.E.; Jungjohann, K.L.; Wong, P.C.; Chiu, P.-L.; Dutrow, G.H.; Arslan, I.; Browning, N.D. Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy. Micron 2012, 43, 1085–1090. [Google Scholar] [CrossRef]
- Minor, A.M.; Dehm, G. Advances in in situ nanomechanical testing. MRS Bull. 2019, 44, 438–442. [Google Scholar] [CrossRef]
- Boston, R.; Schnepp, Z.; Nemoto, Y.; Sakka, Y.; Hall, S.R. In situ TEM observation of a microcrucible mechanism of nanowire growth. Science 2014, 344, 623–626. [Google Scholar] [CrossRef]
- Petkov, N. In Situ Real-Time TEM Reveals Growth, Transformation and Function in One-Dimensional Nanoscale Materials: From a Nanotechnology Perspective. ISRN Nanotechnol. 2013, 2013, 893060. [Google Scholar] [CrossRef][Green Version]
- Kim, J.H.; Kim, J.G.; Song, J.; Bae, T.-S.; Kim, K.-H.; Lee, Y.-S.; Pang, Y.; Oh, K.H.; Chung, H.-S. Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires. Appl. Surf. Sci. 2018, 436, 556–561. [Google Scholar] [CrossRef]
- Panciera, F.; Norton, M.M.; Alam, S.B.; Hofmann, S.; Mølhave, K.; Ross, F.M. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet. Nat. Commun. 2016, 7, 12271. [Google Scholar] [CrossRef]
- Li, J.; Leonard Deepak, F. In situ generation of sub-10 nm silver nanowires under electron beam irradiation in a TEM. Chem. Commun. 2020, 56, 4765–4768. [Google Scholar] [CrossRef]
- Wen, C.-Y.; Reuter, M.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E.; Ross, F. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 2009, 326, 1247–1250. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.B.; Andersen, C.R.; Panciera, F.; Nilausen, A.A.; Hansen, O.; Ross, F.M.; Mølhave, K. In situ TEM modification of individual silicon nanowires and their charge transport mechanisms. Nanotechnology 2020, 31, 494002. [Google Scholar] [CrossRef]
- Panciera, F.; Baraissov, Z.; Patriarche, G.; Dubrovskii, V.G.; Glas, F.; Travers, L.; Mirsaidov, U.; Harmand, J.-C. Phase selection in self-catalyzed GaAs nanowires. Nano Lett. 2020, 20, 1669–1675. [Google Scholar] [CrossRef]
- Zobelli, A.; Gloter, A.; Ewels, C.; Colliex, C. Shaping single walled nanotubes with an electron beam. Phys. Rev. B 2008, 77, 045410. [Google Scholar] [CrossRef]
- Kohno, H.; Mori, Y.; Ichikawa, S.; Ohno, Y.; Yonenaga, I.; Takeda, S. Transformation of a SiC nanowire into a carbon nanotube. Nanoscale 2009, 1, 344–346. [Google Scholar] [CrossRef]
- Ting, Y.-H.; Wu, M.-C.; Aoyama, Y.; Lu, K.-C.; Wu, W.-W. In situ manipulation of E-beam irradiation-induced nanopore formation on molybdenum oxide nanowires. Appl. Surf. Sci. 2021, 544, 148874. [Google Scholar] [CrossRef]
- Harmand, J.-C.; Patriarche, G.; Glas, F.; Panciera, F.; Florea, I.; Maurice, J.-L.; Travers, L.; Ollivier, Y. Atomic step flow on a nanofacet. Phys. Rev. Lett. 2018, 121, 166101. [Google Scholar] [CrossRef]
- Yuan, W.; Yu, J.; Li, H.; Zhang, Z.; Sun, C.; Wang, Y. In situ TEM observation of dissolution and regrowth dynamics of MoO2 nanowires under oxygen. Nano Res. 2016, 10, 397–404. [Google Scholar] [CrossRef]
- Qin, Q.; Yin, S.; Cheng, G.; Li, X.; Chang, T.-H.; Richter, G.; Zhu, Y.; Gao, H. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat. Commun. 2015, 6, 5983. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Rentenberger, C.; Rajagopalan, J. Electron Beam Induced Artifacts During in situ TEM Deformation of Nanostructured Metals. Sci. Rep. 2015, 5, 16345. [Google Scholar] [CrossRef]
- Yamasaki, J.; Takeda, S.; Tsuda, K. Elemental process of amorphization induced by electron irradiation in Si. Phys. Rev. B 2002, 65, 115213. [Google Scholar] [CrossRef]
- Teweldebrhan, D.; Balandin, A. A Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009, 94, 021912. [Google Scholar] [CrossRef]
- Bae, I.-T.; Zhang, Y.; Weber, W.J.; Higuchi, M.; Giannuzzi, L. A Electron-beam induced recrystallization in amorphous apatite. Appl. Phys. Lett. 2007, 90, 021912. [Google Scholar] [CrossRef]
- Casu, A.; Lamberti, A.; Stassi, S.; Falqui, A. Crystallization of TiO2 nanotubes by in situ heating TEM. Nanomaterials 2018, 8, 40. [Google Scholar] [CrossRef]
- Kamins, T.; Li, X.; Williams, R.S.; Liu, X. Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett. 2004, 4, 503–506. [Google Scholar] [CrossRef]
- Luce, F.P.; Oliviero, E.; Azevedo, G.D.M.; Baptista, D.L.; Zawislak, F.C.; Fichtner, P.F.P. In-situ transmission electron microscopy growth of nanoparticles under extreme conditions. J. Appl. Phys. 2016, 119, 035901. [Google Scholar] [CrossRef]
- Mohapatra, S. In-Situ TEM Observation of Electron Irradiation Induced Shape Transition of Elongated Gold Nanoparticles Embedded In Silica. Adv. Mater. Lett. 2013, 4, 444–448. [Google Scholar] [CrossRef]
- Nanda, K.K. On the paradoxical relation between the melting temperature and forbidden energy gap of nanoparticles. J. Chem. Phys. 2010, 133, 054502. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Yu, L.; Chen, W.; Roca i Cabarrocas, P. Wetting Layer: The Key Player in Plasma-Assisted Silicon Nanowire Growth Mediated by Tin. J. Phys. Chem. C 2013, 117, 17786–17790. [Google Scholar] [CrossRef]
- Rodríguez-Manzo, J.A.; Terrones, M.; Terrones, H.; Kroto, H.W.; Sun, L.; Banhart, F. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nat. Nanotechnol. 2007, 2, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Egerton, R.F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Le, D.N.; Nguyen-Truong, H.T. Analytical Formula for the Electron Inelastic Mean Free Path. J. Phys. Chem. C 2021, 125, 18946–18951. [Google Scholar] [CrossRef]
- Wilson, G.; Dennison, J.R. Approximation of Range in Materials as a Function of Incident Electron Energy. IEEE Trans. Plasma Sci. 2012, 40, 291–297. [Google Scholar] [CrossRef]
- Sikora, T.; Serin, V. 2008 The EELS Spectrum Database; Luysberg, M., Tillmann, K., Weirich, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 439–440. [Google Scholar]
- Weber, L.; Gmelin, E. Transport properties of silicon. Appl. Phys. A 1991, 53, 136–140. [Google Scholar] [CrossRef]
- Egerton, R.; McLeod, R.; Wang, F.; Malac, M. Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 2010, 110, 991–997. [Google Scholar] [CrossRef]





| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Zhao, X.; Gong, R.; Ngo, E.; Maurice, J.-L.; Roca i Cabarrocas, P.; Chen, W. Influence of the Electron Beam and the Choice of Heating Membrane on the Evolution of Si Nanowires’ Morphology in In Situ TEM. Materials 2022, 15, 5244. https://doi.org/10.3390/ma15155244
Shen Y, Zhao X, Gong R, Ngo E, Maurice J-L, Roca i Cabarrocas P, Chen W. Influence of the Electron Beam and the Choice of Heating Membrane on the Evolution of Si Nanowires’ Morphology in In Situ TEM. Materials. 2022; 15(15):5244. https://doi.org/10.3390/ma15155244
Chicago/Turabian StyleShen, Ya, Xuechun Zhao, Ruiling Gong, Eric Ngo, Jean-Luc Maurice, Pere Roca i Cabarrocas, and Wanghua Chen. 2022. "Influence of the Electron Beam and the Choice of Heating Membrane on the Evolution of Si Nanowires’ Morphology in In Situ TEM" Materials 15, no. 15: 5244. https://doi.org/10.3390/ma15155244
APA StyleShen, Y., Zhao, X., Gong, R., Ngo, E., Maurice, J.-L., Roca i Cabarrocas, P., & Chen, W. (2022). Influence of the Electron Beam and the Choice of Heating Membrane on the Evolution of Si Nanowires’ Morphology in In Situ TEM. Materials, 15(15), 5244. https://doi.org/10.3390/ma15155244
 
         
                                                

