Effect of Atomic-Temperature Dependence of the Electron–Phonon Coupling in Two-Temperature Model
Abstract
:1. Introduction
2. Model
3. Results
3.1. Electron–phonon Coupling Parameter and Electron Heat Capacity
3.2. The Role of Atomic Temperature Dependence in the Heat Dynamics
3.3. The Role of Parametrization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, A. Outstanding Questions in Electron-Ion Energy Relaxation, Lattice Stability, and Dielectric Function of Warm Dense Matter. Int. J. Quantum Chem. 2012, 112, 150–160. [Google Scholar] [CrossRef]
- Rethfeld, B.; Ivanov, D.S.; Garcia, M.E.; Anisimov, S.I. Modelling Ultrafast Laser Ablation. J. Phys. D: Appl. Phys. 2017, 50, 193001. [Google Scholar] [CrossRef]
- Caricato, A.P.; Luches, A.; Martino, M. Laser Fabrication of Nanoparticles. In Handbook of Nanoparticles; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 407–428. ISBN 9783319153384. [Google Scholar]
- Ashitkov, S.I.; Inogamov, N.A.; Zhakhovskii, V.V.; Emirov, Y.N.; Agranat, M.B.; Oleinik, I.I.; Anisimov, S.I.; Fortov, V.E. Formation of Nanocavities in the Surface Layer of an Aluminum Target Irradiated by a Femtosecond Laser Pulse. JETP Lett. 2012, 95, 176–181. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast Lasers-Reliable Tools for Advanced Materials Processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef]
- Fann, W.S.; Storz, R.; Tom, H.W.K.; Bokor, J. Electron Thermalization in Gold. Phys. Rev. B 1992, 46, 13592–13595. [Google Scholar] [CrossRef]
- Rethfeld, B.; Kaiser, A.; Vicanek, M.; Simon, G. Ultrafast Dynamics of Nonequilibrium Electrons in Metals under Femtosecond Laser Irradiation. Phys. Rev. B 2002, 65, 214303. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, P.; Chase, T.; Reid, A.H.; Shen, X.; Li, R.K.; Carva, K.; Payer, T.; von Hoegen, M.H.; Sokolowski-Tinten, K.; Wang, X.J.; et al. Tracking the Ultrafast Nonequilibrium Energy Flow between Electronic and Lattice Degrees of Freedom in Crystalline Nickel. Phys. Rev. B 2020, 101, 100302. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Zhigilei, L.; Celli, V. Electron-Phonon Coupling and Electron Heat Capacity of Metals under Conditions of Strong Electron-Phonon Nonequilibrium. Phys. Rev. B 2008, 77, 075133. [Google Scholar] [CrossRef] [Green Version]
- Petrov, Y.V.; Inogamov, N.A.; Migdal, K.P. Thermal Conductivity and the Electron-Ion Heat Transfer Coefficient in Condensed Media with a Strongly Excited Electron Subsystem. JETP Lett. 2013, 97, 20–27. [Google Scholar] [CrossRef]
- Medvedev, N.; Milov, I. Electron-Phonon Coupling in Metals at High Electronic Temperatures. Phys. Rev. B 2020, 102, 064302. [Google Scholar] [CrossRef]
- Anisimov, S.I.; Kapeliovich, B.L.; Perel-man, T.L. Electron Emission from Metal Surfaces Exposed to Ultrashort Laser Pulses. J. Exp. Theor. Phys. 1974, 39, 375. [Google Scholar]
- Waldecker, L.; Bertoni, R.; Ernstorfer, R.; Vorberger, J. Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation. Phys. Rev. X 2016, 6, 021003. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.E. Influence of Inter- and Intraband Transitions to Electron Temperature Decay in Noble Metals after Short-Pulsed Laser Heating. J. Heat Transf. 2010, 132, 122402. [Google Scholar] [CrossRef]
- Medvedev, N.; Milov, I. Contribution of Inter- and Intraband Transitions into Electron–Phonon Coupling in Metals. Eur. Phys. J. D 2021, 75, 212. [Google Scholar] [CrossRef]
- Sciaini, G.; Miller, R.J.D. Femtosecond Electron Diffraction: Heralding the Era of Atomically Resolved Dynamics. Rep. Prog. Phys. 2011, 74, 096101. [Google Scholar] [CrossRef]
- Kraus, P.M.; Zürch, M.; Cushing, S.K.; Neumark, D.M.; Leone, S.R. The Ultrafast X-Ray Spectroscopic Revolution in Chemical Dynamics. Nat. Rev. Chem. 2018, 2, 82–94. [Google Scholar] [CrossRef]
- Mo, M.; Chen, Z.; Glenzer, S. Ultrafast Visualization of Phase Transitions in Nonequilibrium Warm Dense Matter. MRS Bull. 2021, 46, 694–703. [Google Scholar] [CrossRef]
- Akhmetov, F.; Milov, I.; Semin, S.; Formisano, F.; Medvedev, N.; Sturm, J.M.; Zhakhovsky, V.V.; Makhotkin, I.A.; Kimel, A.; Ackermann, M. Laser-Induced Electron Dynamics and Surface Modification in Ruthenium Thin Films. arXiv 2022, arXiv:2206.08690. [Google Scholar] [CrossRef]
- Lifshits, I.M.; Kaganov, M.I.; Tanatarov, L.V. On the Theory of Radiation-Induced Changes in Metals. J. Nucl. Energy. Part A. React. Sci. 1960, 12, 69–78. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Petrov, Y.V.; Inogamov, N.A.; Migdal, K.P. Two-Temperature Heat Conductivity of Gold. Prog. Electromagn. Res. Symp. 2015, 4, 2431–2435. [Google Scholar]
- Petrov, Y.; Migdal, K.; Inogamov, N.; Khokhlov, V.; Ilnitsky, D.; Milov, I.; Medvedev, N.; Lipp, V.; Zhakhovsky, V. Ruthenium under Ultrafast Laser Excitation: Model and Dataset for Equation of State, Conductivity, and Electron-Ion Coupling. Data Brief 2020, 28, 104980. [Google Scholar] [CrossRef]
- Medvedev, N.; Tkachenko, V.; Lipp, V.; Li, Z.; Ziaja, B. Various Damage Mechanisms in Carbon and Silicon Materials under Femtosecond X-Ray Irradiation. 4open 2018, 1, 3. [Google Scholar] [CrossRef]
- Tully, J.C. Molecular Dynamics with Electronic Transitions. J. Chem. Phys. 1990, 93, 1061. [Google Scholar] [CrossRef]
- Tully, J.C. Perspective: Nonadiabatic Dynamics Theory. J. Chem. Phys. 2012, 137, 22A301. [Google Scholar] [CrossRef]
- Mehl, M.J.; Papaconstantopoulos, D.A. NRL Transferable Tight-Binding Parameters Periodic Table. Available online: http://esd.cos.gmu.edu/tb/tbp.html (accessed on 16 July 2022).
- Papaconstantopoulos, D.A.; Mehl, M.J. The Slater Koster Tight-Binding Method: A Computationally Efficient and Accurate Approach. J. Phys. Condens. Matter 2003, 15, R413–R440. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, P.; Mäkinen, V. Density-Functional Tight-Binding for Beginners. Comput. Mater. Sci. 2009, 47, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Mehl, M.J.; Papaconstantopoulos, D.A.; Mazin, I.I.; Bacalis, N.C.; Pickett, W.E. Applications of the NRL Tight-Binding Method to Magnetic Systems. J. Appl. Phys. 2001, 89, 6880–6882. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Koskinen, P.; Ramasubramaniam, A. Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt-Ru Alloys. J. Phys. Chem. A 2017, 121, 2497–2502. [Google Scholar] [CrossRef]
- Frenzel, J.; Oliveira, A.F.; Jardillier, N.; Heine, T.; Seifert, G. Semi-Relativistic, Self-Consistent Charge Slater-Koster Tables for Density-Functional Based Tight-Binding (DFTB) for Materials Science Simulations; TU-Dresden: Dresden, Germany, 2009. [Google Scholar]
- Medvedev, N.; Milov, I.; Ziaja, B. Structural Stability and Electron-phonon Coupling in Two-dimensional Carbon Allotropes at High Electronic and Atomic Temperatures. Carbon Trends 2021, 5, 100121. [Google Scholar] [CrossRef]
- McMillan, W.L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968, 167, 331–344. [Google Scholar] [CrossRef]
- Anisimov, S.I.; Rethfeld, B. Theory of Ultrashort Laser Pulse Interaction with a Metal. Proc. SPIE 1997, 192, 192–203. [Google Scholar]
- Recoules, V.; Clérouin, J.; Zérah, G.; Anglade, P.M.; Mazevet, S. Effect of Intense Laser Irradiation on the Lattice Stability of Semiconductors and Metals. Phys. Rev. Lett. 2006, 96, 55503. [Google Scholar] [CrossRef]
- Medvedev, N.; Milov, I. Nonthermal Phase Transitions in Metals. Sci. Rep. 2020, 10, 12775. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.M.; White, T.G. A Molecular Dynamics Study of Laser-Excited Gold. Matter Radiat. Extrem. 2022, 7, 036901. [Google Scholar] [CrossRef]
- Wetta, N.; Pain, J.C. Consistent Approach for Electrical Resistivity within Ziman’s Theory from Solid State to Hot Dense Plasma: Application to Aluminum. Phys. Rev. E 2020, 102, 53209. [Google Scholar] [CrossRef]
- Mo, M.Z.; Chen, Z.; Li, R.K.; Dunning, M.; Witte, B.B.L.; Baldwin, J.K.; Fletcher, L.B.; Kim, J.B.; Ng, A.; Redmer, R.; et al. Heterogeneous to Homogeneous Melting Transition Visualized with Ultrafast Electron Diffraction. Science 2018, 360, 1451–1455. [Google Scholar] [CrossRef] [Green Version]
- Mo, M.Z.; Becker, V.; Ofori-Okai, B.K.; Shen, X.; Chen, Z.; Witte, B.; Redmer, R.; Li, R.K.; Dunning, M.; Weathersby, S.P.; et al. Determination of the Electron-Lattice Coupling Strength of Copper with Ultrafast MeV Electron Diffraction. Rev. Sci. Instrum. 2018, 89, 10–108. [Google Scholar] [CrossRef]
- Norris, P.M.; Caffrey, A.P.; Stevens, R.J.; Klopf, J.M.; McLeskey, J.T.; Smith, A.N. Femtosecond Pump–Probe Nondestructive Examination of Materials (Invited). Rev. Sci. Instrum. 2003, 74, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Hohlfeld, J.; Wellershoff, S.S.; Gudde, J.; Conrad, U.; Jahnke, V.; Matthias, E.; Güdde, J.; Conrad, U.; Jähnke, V.; Matthias, E. Electron and Lattice Dynamics Following Optical Excitation of Metals. Chem. Phys. 2000, 251, 237–258. [Google Scholar] [CrossRef]
- Hostetler, J.L.; Smith, A.N.; Czajkowsky, D.M.; Norris, P.M. Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al. Appl. Opt. 1999, 38, 3614. [Google Scholar] [CrossRef]
- Hopkins, P.E.; Kassebaum, J.L.; Norris, P.M. Effects of Electron Scattering at Metal-Nonmetal Interfaces on Electron-Phonon Equilibration in Gold Films. J. Appl. Phys. 2009, 105, 023710. [Google Scholar] [CrossRef] [Green Version]
- Silaeva, E.; Saddier, L.; Colombier, J.-P. Drude–Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron–Phonon Nonequilibrium. Appl. Sci. 2021, 11, 9902. [Google Scholar] [CrossRef]
- Wang, X.Y.; Riffe, D.M.; Lee, Y.-S.; Downer, M.C. Time-Resolved Electron-Temperature Measurement in a Highly Excited Gold Target Using Femtosecond Thermionic Emission. Phys. Rev. B 1994, 50, 8016–8019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milov, I.; Zhakhovsky, V.; Ilnitsky, D.; Migdal, K.; Khokhlov, V.; Petrov, Y.; Inogamov, N.; Lipp, V.; Medvedev, N.; Ziaja, B.; et al. Two-Level Ablation and Damage Morphology of Ru Films under Femtosecond Extreme UV Irradiation. Appl. Surf. Sci. 2020, 528, 146952. [Google Scholar] [CrossRef]
- Volkov, M.; Sato, S.A.; Schlaepfer, F.; Kasmi, L.; Hartmann, N.; Lucchini, M.; Gallmann, L.; Rubio, A.; Keller, U. Attosecond Screening Dynamics Mediated by Electron Localization in Transition Metals. Nat. Phys. 2019, 15, 1145–1149. [Google Scholar] [CrossRef] [Green Version]
Material | α | |
---|---|---|
NRL | DFTB | |
Ru | 0.55 | 0.45 |
Pd | 0.55 | - |
Au | 0.45 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmetov, F.; Medvedev, N.; Makhotkin, I.; Ackermann, M.; Milov, I. Effect of Atomic-Temperature Dependence of the Electron–Phonon Coupling in Two-Temperature Model. Materials 2022, 15, 5193. https://doi.org/10.3390/ma15155193
Akhmetov F, Medvedev N, Makhotkin I, Ackermann M, Milov I. Effect of Atomic-Temperature Dependence of the Electron–Phonon Coupling in Two-Temperature Model. Materials. 2022; 15(15):5193. https://doi.org/10.3390/ma15155193
Chicago/Turabian StyleAkhmetov, Fedor, Nikita Medvedev, Igor Makhotkin, Marcelo Ackermann, and Igor Milov. 2022. "Effect of Atomic-Temperature Dependence of the Electron–Phonon Coupling in Two-Temperature Model" Materials 15, no. 15: 5193. https://doi.org/10.3390/ma15155193
APA StyleAkhmetov, F., Medvedev, N., Makhotkin, I., Ackermann, M., & Milov, I. (2022). Effect of Atomic-Temperature Dependence of the Electron–Phonon Coupling in Two-Temperature Model. Materials, 15(15), 5193. https://doi.org/10.3390/ma15155193