Ag Nanocluster-Enhanced Scintillation Properties of Borophosphate Glasses Doped with CsPbBr3 Quantum Dots
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Glass Composition and Preparation
2.2. Characterization of Glass Samples
3. Results and Discussion
3.1. XRD Patterns of PG and CsPbBr3 QD-Doped Glasses Containing Ag NPs
3.2. XPS Spectra of PG and CsPbBr3 QD-Doped Glasses Containing Ag NPs
3.3. TEM and EPMA Images of CsPbBr3 QD-Doped Glasses Containing Ag NPs
3.4. Raman Spectra of CsPbBr3 QD-Doped Glasses Containing Ag NPs
3.5. Photoluminescence Properties of CsPbBr3 QD-Doped Glasses Containing Ag NPs
3.6. Scintillation Properties of CsPbBr3 QD-Doped Glasses Containing Ag NPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heo, J.H.; Shin, D.H.; Park, J.K.; Kim, D.H.; Lee, S.J.; Im, S.H. High-Performance Next-Generation Perovskite Nanocrystal Scintillator for Nondestructive X-Ray Imaging. Adv. Mater. 2018, 30, 1801743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Sun, R.J.; Qi, X.Y.; Fu, K.F.; Chen, Q.S.; Ding, Y.C.; Xu, L.J.; Liu, L.M.; Han, Y.; Malko, A.V.; et al. Metal Halide Perovskite Nanosheet for X-ray High-Resolution Scintillation Imaging Screens. ACS Nano 2019, 13, 2520–2525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, F.; Patton, G.; Belsky, A.; Fasoli, M.; Vedda, A.; Trevisani, M.; Bettinelli, M.; Dujardin, C. Radioluminescence Sensitization in Scintillators and Phosphors: Trap Engineering and Modeling. J. Phys. Chem. C 2014, 118, 9670–9676. [Google Scholar] [CrossRef]
- Chen, Q.S.; Wu, J.; Ou, X.Y.; Huang, B.L.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.W.; Han, S.Y.; Liang, L.L.; Yi, Z.G.; et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef]
- Ma, W.B.; Jiang, T.M.; Yang, Z.; Zhang, H.; Su, Y.R.; Chen, Z.; Chen, X.Y.; Ma, Y.G.; Zhu, W.J.; Yu, X.; et al. Highly Resolved and Robust Dynamic X-Ray Imaging Using Perovskite Glass-Ceramic Scintillator with Reduced Light Scattering. Adv. Sci. 2021, 8, 2003728. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.D.; Xu, Q.C.; Wu, N.; Cui, K.Y.; Zhang, W.; Huang, Y.D. Non-suspended optomechanical crystal cavities using As2S3 chalcogenide glass. Photonics Res. 2021, 9, 05000893. [Google Scholar] [CrossRef]
- Isokawa, Y.; Nakauchi, D.; Okada, G.; Kawaguchi, N.; Yanagida, T. Radiation induced luminescence properties of Ce-doped Y2O3-Al2O3-SiO2 glass prepared using floating zone furnace. J. Alloys Compd. 2019, 782, 859–864. [Google Scholar] [CrossRef]
- Wang, Y.T.; Fu, S.N.; Kong, J.; Komarov, A.; Klimczak, M.; Buczyński, R.; Tang, X.H.; Tang, M.; Qin, Y.W.; Zhao, L.M. Nonlinear Fourier transform enabled eigenvalue spectrum investigation for fiber laser radiation. Photonics Res. 2021, 9, 08001531. [Google Scholar] [CrossRef]
- Juárez-Hernández, M.; Mejía, E.B. Spectral analysis of short-wavelength emission by up-conversion in a Tm3+: ZBLAN dual-diode-pumped optical fiber. Chin. Opt. Lett. 2020, 18, 071901. [Google Scholar] [CrossRef]
- Zaman, F.; Rooh, G.; Srisittipokakun, N.; Kim, H.J.; Kaewnuam, E.; Meejitpaisan, P.; Kaewkhao, J. Scintillation and luminescence characteristics of Ce3+ doped in Li2O-Gd2O3-BaO-B2O3 scintillating glasses. Radiat. Phys. Chem. 2017, 130, 158–163. [Google Scholar] [CrossRef]
- Shen, C.; Yan, Q.Q.; Xu, Y.S.; Yang, G.; Wang, S.F.; Xing, Z.W.; Chenw, G.R. Luminescence Behaviors of Ce3+ Ions in Chalcohalide Glasses. J. Am. Ceram. Soc. 2010, 93, 614–617. [Google Scholar] [CrossRef]
- Chen, Q.; Valiev, D.; Stepanov, S.; Ding, J.; Liu, L.; Li, C.; Lin, H.; Zhou, Y.; Zeng, F. Influence of the Tb3+ concentration on the luminescent properties of high silica glass. Opt. Mater. 2018, 86, 606–610. [Google Scholar] [CrossRef]
- Sun, Y.; Koshimizu, M.; Kishimoto, S.; Asai, K. Synthesis and characterization of Pr3+-doped glass scintillators prepared by the sol-gel method. J. Sol-Gel Sci. Technol. 2012, 62, 313–318. [Google Scholar] [CrossRef]
- Patton, G.; Moretti, F.; Belsky, A.; al Saghir, K.; Chenu, S.; Matzen, G.; Allix, M.; Dujardin, C. Light yield sensitization by X-ray irradiation of the BaAl4O7: Eu2+ ceramic scintillator obtained by full crystallization of glass. Phys. Chem. Chem. Phys. 2014, 16, 24824–24829. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.W.; Shao, C.Y.; Zhang, Y.; Liao, X.L.; Yang, Q.H.; Hu, L.L.; Chen, D.P. Scintillation properties and X-ray irradiation hardness of Ce3+-doped Gd2O3-based scintillation glass. J. Lumin. 2016, 176, 1–5. [Google Scholar] [CrossRef]
- Oliveira, M.I.A.; Rivelino, R.; Mota, F.d.; Gueorguiev, G.K. Optical Properties and Quasiparticle Band Gaps of Transition-Metal Atoms Encapsulated by Silicon Cages. J. Phys. Chem. C 2014, 118, 5501–5509. [Google Scholar] [CrossRef] [Green Version]
- Freitas, R.R.Q.; de Brito Mota, F.; Rivelino, R.; de Castilho, C.M.C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Spin-orbit-induced gap modification in buckled honeycomb XBi and XBi3; (X = B, Al, Ga, and In) sheets. J. Phys. Condens. Matter 2015, 27, 485306. [Google Scholar] [CrossRef] [Green Version]
- Quan, C.J.; Xing, X.; Huang, S.H.; Jin, M.F.F.; Shi, T.C.; Zhang, Z.Y.; Xiang, W.D.; Wang, Z.S.; Leng, Y.X. Nonlinear optical properties of CsPbClxBr(3−x) nanocrystals embedded glass. Photonics Res. 2021, 9, 1767–1774. [Google Scholar] [CrossRef]
- He, Q.Y.; Mei, E.; Wang, Z.; Liang, X.J.; Chen, S.Q.; Xiang, W.D. Ultrastable Gd3+ doped CsPbCl1.5Br1.5 nanocrystals blue glass for regulated and low thresholds amplified spontaneous emission. Photonics Res. 2021, 9, 1916–1923. [Google Scholar] [CrossRef]
- Du, Y.; Wang, X.; Shen, D.Y.; Yuan, J.; Wang, Y.J.; Yan, S.S.; Han, S.; Tao, Y.T.; Chen, D.P. Precipitation of CsPbBr3 quantum dots in borophosphate glasses inducted by heat-treatment and UV-NIR ultrafast lasers. Chem. Eng. J. 2020, 401, 126132. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, R.L.; Yue, Y.; Yan, S.S.; Zhang, L.Y.; Chen, D.P. Room temperature synthesis of CsPbX3 (X = Cl, Br, I) perovskite quantum dots by water-induced surface crystallization of glass. J. Alloys Compd. 2020, 818, 152872. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, X.Y.; Bai, X.; Wu, H.; Shen, X.Y.; Zhang, Y.; Zhang, W.; Zheng, W.T.; Song, H.W.; Yu, W.W.; et al. Spontaneous Silver Doping and Surface Passivation of CsPbl3 Perovskite Active Layer Enable Light-Emitting Devices with an External Quantum Efficiency of 11.2%. ACS Energy Lett. 2018, 3, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Sharma, Y.D.; Kim, Y.S.; Bur, J.A.; Shenoi, R.V.; Krishna, S.; Huang, D.H.; Lin, S.Y. A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots. Nano Lett. 2010, 10, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Diez, I.; Ras, R.H. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970. [Google Scholar] [CrossRef]
- Kuznetsov, A.S.; Tikhomirov, V.K.; Shestakov, M.V.; Moshchalkov, V.V. Ag Nanocluster Functionalized Glasses for Efficient Photonic Conversion in Light Sources, Solar Cells and Flexible Screen Monitors. Nanoscale 2013, 5, 10065–10075. [Google Scholar] [CrossRef]
- Gonella, F. Silver doping of glasses. Ceram. Int. 2015, 41, 6693–6701. [Google Scholar] [CrossRef]
- Li, L.J.; Yang, Y.; Zhou, D.C.; Xu, X.H.; Qiu, J.B. The influence of Ag species on spectroscopic features of Tb3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange. J. Non-Cryst. Solids 2014, 385, 95–99. [Google Scholar] [CrossRef]
- Xu, Z.S.; Liu, X.F.; Qiu, J.R.; Cheng, C. Enhanced luminescence of CsPbBr3 perovskite quantum-dot-doped borosilicate glasses with Ag nanoparticles. Opt. Lett. 2019, 44, 5626–5629. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, D.C.; Qiu, J.B.; Long, Z.W.; Zhu, R.; Wang, Q.; Lai, J.A.; Wu, H.; Zhu, C.C. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass. J. Am. Ceram. Soc. 2020, 103, 2463–2470. [Google Scholar] [CrossRef]
- Sun, K.; Tan, D.Z.; Fang, X.Y.; Xia, X.T.; Lin, D.J.; Song, J.; Lin, Y.H.; Liu, Z.J.; Gu, M.; Yue, Y.Z.; et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 2022, 375, 307–310. [Google Scholar] [CrossRef]
- Mohapatra, S. Tunable surface plasmon resonance of silver nanoclusters in ion exchanged soda lime glass. J. Alloy. Compd. 2014, 598, 11–15. [Google Scholar] [CrossRef]
- Fang, Y.Z.; Meng, S.H.; Hou, J.S.; Liu, Y.F.; Guo, Y.Y.; Zhao, G.Y.; Zou, J.; Hu, L.L. Experimental study of growth of silver nanoparticles embedded in Bi2O3-SiO2-B2O3 glass. J. Alloy. Compd. 2019, 809, 151725. [Google Scholar] [CrossRef]
- Mathpal, M.C.; Kumar, P.; Kumar, S.; Tripathi, A.K.; Singh, M.K.; Prakash, J.; Agarwal, A. Opacity and plasmonic properties of Ag embedded glass based metamaterials. RSC Adv. 2015, 5, 12555–12562. [Google Scholar] [CrossRef]
- Wang, P.W. Formation of silver colloids in silver ion-exchanged soda-lime glasses during annealing. Appl. Surf. Sci. 1997, 120, 291–298. [Google Scholar] [CrossRef]
- Fan, H.Y.; Gao, G.J.; Wang, G.N.; Hu, L.L. Infrared, Raman and XPS spectroscopic studies of Bi2O3-B2O3-GeO2 glasses. Solid State Sci. 2010, 12, 541–545. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Q.X.; Wang, K. Pressure-Induced Structural and Optical Properties of Inorganic Halide Perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 3752–3758. [Google Scholar] [CrossRef] [PubMed]
- Schmid, T.; Opilik, L.; Blum, C.; Zenobi, R. Nanoscale Chemical Imaging Using Tip-Enhanced Raman Spectroscopy: A Critical Review, Angew. Chem. Int. Ed. 2013, 52, 5940–5954. [Google Scholar] [CrossRef] [PubMed]
- Zrimsek, A.B.; Chiang, N.H.; Mattei, M.; Zaleski, S.; McAnally, M.O.; Chapman, C.T.; Henry, A.I.; Schatz, G.C.; van Duyne, R.P. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 7583–7613. [Google Scholar] [CrossRef]
- Shestakov, M.V.; Cuong, N.T.; Tikhomirov, V.K.; Nguyen, M.T.; Chibotaru, L.F.; Moshchalkov, V.V. Quantum Chemistry Modeling of Luminescence Kinetics of Ag Nanoclusters Dispersed in Glass Host. J. Phys. Chem. C 2013, 117, 7796–7800. [Google Scholar] [CrossRef]
- Ma, R.H.; Zhao, J.J.; Chen, X.T.; Qiao, X.S.; Fan, X.P.; Du, J.C.; Zhang, X.H. Stabilization of ultra-small [Ag2]2+ and [Agm]n+ nano-clusters through negatively charged tetrahedrons in oxyfluoride glass networks: To largely enhance the luminescence quantum yields. Phys. Chem. Chem. Phys. 2017, 19, 22638–22645. [Google Scholar] [CrossRef]
- Li, Y.D.; Chen, F.W.; Liu, C.; Han, J.J.; Zhao, X.J. UV-Visible spectral conversion of silver ion-exchanged aluminosilicate glasses. J. Non-Cryst. Solids 2017, 471, 82–90. [Google Scholar] [CrossRef]
Glass Sample | Photoluminescence Center Wavelength (nm) | Photoluminescence Peak Intensity (a.u.) | Radioluminescence Center Wavelength (nm) | Radioluminescence Peak Intensity (a.u.) | Fluorescence Lifetime (ns) | PLQY (%) | Density (g/cm3) |
---|---|---|---|---|---|---|---|
HTP-0 Ag | 520 | 0.34 | 538 | 0.16 | 24.90 | 27.2 | 2.75 |
HTP-0.25 Ag | 521 | 0.38 | 540 | 0.26 | 18.95 | 28.3 | 2.82 |
HTP-0.5 Ag | 525 | 0.65 | 543 | 0.45 | 14.95 | 37.9 | 2.91 |
HTP-1.0 Ag | 526 | 1 | 547 | 1 | 13.62 | 43.0 | 3.03 |
HTP-1.5 Ag | 523 | 0.54 | 542 | 0.39 | 12.25 | 32.8 | 3.12 |
HTP-3.0 Ag | 522 | 0.42 | 541 | 0.34 | 8.99 | 26.8 | 3.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Deng, L.; Chen, D. Ag Nanocluster-Enhanced Scintillation Properties of Borophosphate Glasses Doped with CsPbBr3 Quantum Dots. Materials 2022, 15, 5187. https://doi.org/10.3390/ma15155187
Du Y, Deng L, Chen D. Ag Nanocluster-Enhanced Scintillation Properties of Borophosphate Glasses Doped with CsPbBr3 Quantum Dots. Materials. 2022; 15(15):5187. https://doi.org/10.3390/ma15155187
Chicago/Turabian StyleDu, Ying, Lu Deng, and Danping Chen. 2022. "Ag Nanocluster-Enhanced Scintillation Properties of Borophosphate Glasses Doped with CsPbBr3 Quantum Dots" Materials 15, no. 15: 5187. https://doi.org/10.3390/ma15155187