The Retention Effect of Resin-Based Desensitizing Agents on Hypersensitivity—A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Aspects
2.2. Participant Selection
2.3. Experimental Materials
2.4. Allocation
2.5. Treatment Protocol
2.6. Evaluation
2.7. Statistical Analysis
3. Results
3.1. The Time Course of Adhesion Rate of Two Types of Resin-Based Desensitizing Agents by Their Site
3.1.1. Adhesion Ability of Hybrid Coat II
3.1.2. The Adhesion Ability of Bio Coat Ca
3.2. Differences in the Adhesion Ability of the Resin-Based Desensitizing Agents
4. Discussion
5. Conclusions
- The adhesion rate of both resin-based desensitizing agents became 10% or less after one month.
- Adhesion rates decreased on the mandibular and lingual sides, especially on the mandibular lingual side.
- Adhesion rates were higher in the maxillary and buccal regions, especially in the maxillary buccal region.
- Addition of C-MET and MDCP contributed to improvements of adhesion rate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Witkop, C.J. Hereditary Defects in Enamel and Dentin. Hum. Hered. 1957, 7, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Witkop, C.J., Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: Problems in classification. J. Oral Pathol. 1988, 17, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Poulter, J.A.; Murillo, G.; Brookes, S.J.; Smith, C.E.L.; Parry, D.A.; Silva, S.; Kirkham, J.; Inglehearn, C.F.; Mighell, A.J. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum. Mol. Genet. 2014, 23, 5317–5324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkop, C.J.; Kuhlmann, W.; Sauk, J. Autosomal recessive pigmented hypomaturation amelogenesis imperfecta. Oral Surg. Oral Med. Oral Pathol. 1973, 36, 367–382. [Google Scholar] [CrossRef]
- Heitmuller, D.; Thiering, E.; Hoffmann, U.; Heinrich, J.; Manton, D.; Kuhnisch, J.; Neumann, C.; Bauer, C.P.; Heinrich-Weltzien, R.; Hickel, R.; et al. Is there a positive relationship between molar incisor hypomineralisations and the presence of dental caries? Int. J. Paediatr. Dent. 2013, 23, 116–124. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Ki, Y.; Chu, V. Molar incisor hypomineralization in Hong Kong Chinese children. Int. J. Paediatr. Dent. 2008, 18, 348–352. [Google Scholar] [CrossRef]
- Saitoh, M.; Shintani, S. Molar incisor hypomineralization: A review and prevalence in Japan. Jpn. Dent. Sci. Rev. 2021, 57, 71–77. [Google Scholar] [CrossRef]
- Serna Munoz, C.; Ortiz Ruiz, A.J.; Perez Silva, A.; Bravo-Gonzalez, L.A.; Vicente, A. Second primary molar hypomineralisation and drugs used during pregnancy and infancy. A systematic review. Clin. Oral Investig. 2020, 24, 1287–1297. [Google Scholar] [CrossRef]
- Lee, D.W.; Kim, Y.J.; Kim, S.O.; Choi, S.C.; Kim, J.; Lee, J.H.; Kim, H.J.; Shin, J.; Lee, N.Y.; Kim, S.M.; et al. Factors Associated with Molar-Incisor Hypomineralization: A Population-Based Case-Control Study. Pediatr. Dent. 2020, 42, 133–139. [Google Scholar]
- Mejia, J.D.; Restrepo, M.; Gonzalez, S.; Alvarez, L.G.; Santos-Pinto, L.; Escobar, A. Molar Incisor Hypomineralization in Colombia: Prevalence, Severity and Associated Risk Factors. J. Clin. Pediatr. Dent. 2019, 43, 185–189. [Google Scholar] [CrossRef]
- Vlachou, C.; Arhakis, A.; Kotsanos, N. Distribution and morphology of enamel hypomineralisation defects in second primary molars. Eur. Arch. Paediatr. Dent. 2021, 22, 241–246. [Google Scholar] [CrossRef]
- Linner, T.; Khazaei, Y.; Bucher, K.; Pfisterer, J.; Hickel, R.; Kuhnisch, J. Hypersensitivity in teeth affected by molar-incisor hypomineralization (MIH). Sci. Rep. 2021, 11, 17922. [Google Scholar] [CrossRef]
- Raposo, F.; de Carvalho Rodrigues, A.C.; Lia, E.N.; Leal, S.C. Prevalence of Hypersensitivity in Teeth Affected by Molar-Incisor Hypomineralization (MIH). Caries Res. 2019, 53, 424–430. [Google Scholar] [CrossRef]
- Broadbent, J.M.; Thomson, W.M.; Williams, S.M. Does caries in primary teeth predict enamel defects in permanent teeth? A longitudinal study. J. Dent. Res. 2005, 84, 260–264. [Google Scholar] [CrossRef]
- Lo, E.C.; Zheng, C.G.; King, N.M. Relationship between the presence of demarcated opacities and hypoplasia in permanent teeth and caries in their primary predecessors. Caries Res. 2003, 37, 456–461. [Google Scholar] [CrossRef]
- Bardellini, E.; Amadori, F.; Pasini, S.; Majorana, A. Dental Anomalies in Permanent Teeth after Trauma in Primary Dentition. J. Clin. Pediatr. Dent. 2017, 41, 5–9. [Google Scholar] [CrossRef]
- Mendoza-Mendoza, A.; Iglesias-Linares, A.; Yanez-Vico, R.M.; Abalos-Labruzzi, C. Prevalence and complications of trauma to the primary dentition in a subpopulation of Spanish children in southern Europe. Dent. Traumatol. 2015, 31, 144–149. [Google Scholar] [CrossRef]
- Ferreira, J.M.; Fernandes de Andrade, E.M.; Katz, C.R.; Rosenblatt, A. Prevalence of dental trauma in deciduous teeth of Brazilian children. Dent. Traumatol. 2009, 25, 219–223. [Google Scholar] [CrossRef]
- Ghanim, A.M.; Morgan, M.V.; Marino, R.J.; Bailey, D.L.; Manton, D.J. Risk factors of hypomineralised second primary molars in a group of Iraqi schoolchildren. Eur. Arch. Paediatr. Dent. 2012, 13, 111–118. [Google Scholar] [CrossRef]
- McKee, J.K.; Lunz, R. Correlates of enamel hypoplasia with human dental reduction. Am. J. Hum. Biol. 1990, 2, 459–465. [Google Scholar] [CrossRef]
- Abbott, P. Traumatic dental injuries are now the 5th most prevalent disease/injury in the world-But they are being neglected!! Dent. Traumatol. 2018, 34, 383. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Mazumder, D. Comparative evaluation of treatment of noncarious cervical hypersensitivity by a fluoride varnish, a dentin bonding agent, and Er, Cr:YSGG laser: An in vivo study. J. Conserv. Dent. 2019, 22, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.G.; Yi, Y.A.; Shin, S.J.; Park, J.W. Analysis of factors associated with cracked teeth. J. Endod. 2012, 38, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Francisco, S.S.; Filho, F.J.; Pinheiro, E.T.; Murrer, R.D.; de Jesus Soares, A. Prevalence of traumatic dental injuries and associated factors among Brazilian schoolchildren. Oral Health Prev. Dent. 2013, 11, 31–38. [Google Scholar] [CrossRef]
- Heravi, F.; Shafaee, H.; Abdollahi, M.; Rashed, R. How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques? J. Dent. 2015, 12, 188–194. [Google Scholar]
- Bernard-Granger, C.; Gebeile-Chauty, S. Enamel cracks: Influence of orthodontic process. Orthod. Fr. 2014, 85, 245–251. [Google Scholar] [CrossRef]
- Salehi, P.; Pakshir, H.; Naseri, N.; Baherimoghaddam, T. The effects of composite resin types and debonding pliers on the amount of adhesive remnants and enamel damages: A stereomicroscopic evaluation. J. Dent. Res. Dent. Clin. Dent. Prospects 2013, 7, 199–205. [Google Scholar] [CrossRef]
- Wu, S.; Lew, H.P.; Chen, N.N. Incidence of Pulpal Complications after Diagnosis of Vital Cracked Teeth. J. Endod. 2019, 45, 521–525. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Kim, E.; Kim, K.H.; Kim, S.T.; Jeong Choi, Y. Survival and prognostic factors of managing cracked teeth with reversible pulpitis: A 1- to 4-year prospective cohort study. Int. Endod. J. 2021, 54, 1727–1737. [Google Scholar] [CrossRef]
- Dumbryte, I.; Linkeviciene, L.; Malinauskas, M.; Linkevicius, T.; Peciuliene, V.; Tikuisis, K. Evaluation of enamel micro-cracks characteristics after removal of metal brackets in adult patients. Eur. J. Orthod. 2013, 35, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, L.; Laino, L.; De Stefano, R.; D’Amico, C.; Bocchieri, S.; Amoroso, G.; Isola, G.; Cervino, G. Dental Whitening Gels: Strengths and Weaknesses of an Increasingly Used Method. Gels 2019, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Cunha-Cruz, J.; Wataha, J.C.; Heaton, L.J.; Rothen, M.; Sobieraj, M.; Scott, J.; Berg, J.; Northwest Practice-based Research Collaborative in Evidence-based Dentistry. The prevalence of dentin hypersensitivity in general dental practices in the northwest United States. J. Am. Dent. Assoc. 2013, 144, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Izhar, F.; Nazir, M.A.; Majeed, A.; Almas, K. A Study of Dentists about Their Knowledge and Practice of Dentine Hypersensitivity. Eur. J. Dent. 2019, 13, 540–546. [Google Scholar] [CrossRef] [Green Version]
- Shannon, H.; Spencer, P.; Gross, K.; Tira, D. Characterization of enamel exposed to 10% carbamide peroxide bleaching agents. Quintessence Int. 1993, 24, 39–44. [Google Scholar]
- Bitter, N.C. A scanning electron microscopy study of the effect of bleaching agents on enamel: A preliminary report. J. Prosthet. Dent. 1992, 67, 852–855. [Google Scholar] [CrossRef]
- Bitter, N.C. A scanning electron microscope study of the long-term effect of bleaching agents on the enamel surface in vivo. Gen. Dent. 1998, 46, 84–88. [Google Scholar]
- Sulieman, M.; Addy, M.; Macdonald, E.; Rees, J.S. A safety study in vitro for the effects of an in-office bleaching system on the integrity of enamel and dentine. J. Dent. 2004, 32, 581–590. [Google Scholar] [CrossRef]
- Markowitz, K. Pretty painful: Why does tooth bleaching hurt? Med. Hypotheses 2010, 74, 835–840. [Google Scholar] [CrossRef]
- Yahya, G.; AlAlwi, A.; Shurayji, F.; Baroom, W.; Rajeh, M.; AbdelAleem, N. Effectiveness of sodium fluoride varnish and/or diode laser in decreasing post-bleaching hypersensitivity: A comparative study. Saudi Dent. J. 2022, 34, 62–67. [Google Scholar] [CrossRef]
- Miglani, S.; Aggarwal, V.; Ahuja, B. Dentin hypersensitivity: Recent trends in management. J. Conserv. Dent. 2010, 13, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Mathew, M.G.; Soni, A.J.; Khan, M.M.; Kauser, A.; Charan, V.S.S.; Akula, S.K. Efficacy of remineralizing agents to occlude dentinal tubules in primary teeth subjected to dentin hypersensitivity in vitro: SEM study. J. Fam. Med. Prim. Care 2020, 9, 354–358. [Google Scholar] [CrossRef]
- Ito, S.; Iijima, M.; Motai, F.; Mizoguchi, I.; Saito, T. Effects of calcium salts of acidic monomers on mineral induction of phosphoprotein immobilized to agarose beads. J. Biomed. Mater. Res. Part A 2012, 100, 2760–2765. [Google Scholar] [CrossRef]
- Hashimura, T.; Yamada, A.; Iwamoto, T.; Arakaki, M.; Saito, K.; Fukumoto, S. Application of a tooth-surface coating material to teeth with discolored crowns. Pediatr. Dent. J. 2013, 23, 44–50. [Google Scholar] [CrossRef]
- Paschoal, M.A.B.; Costa, H.E.; Santos-Pinto, L.; Ferreira, M.C. Photobiomodulation therapy for hypersensitivity associated with molar-incisor hypomineralization: A case report. Gen. Dent. 2021, 69, 50–53. [Google Scholar]
- Tadano, M.; Yamada, A.; Maruya, Y.; Hino, R.; Nakamura, T.; Hoshikawa, S.; Fukumoto, S.; Saito, K. Evaluation of a Hypersensitivity Inhibitor Containing a Novel Monomer That Induces Remineralization-A Case Series in Pediatric Patients. Children 2021, 8, 1189. [Google Scholar] [CrossRef] [PubMed]
- Usai, P.; Campanella, V.; Sotgiu, G.; Spano, G.; Pinna, R.; Eramo, S.; Saderi, L.; Garcia-Godoy, F.; Derchi, G.; Mastandrea, G.; et al. Effectiveness of Calcium Phosphate Desensitising Agents in Dental Hypersensitivity Over 24 Weeks of Clinical Evaluation. Nanomaterials 2019, 9, 1748. [Google Scholar] [CrossRef] [Green Version]
- Younus, M.Z.; Ahmed, M.A.; Syed, A.U.Y.; Baloch, J.M.; Ali, M.; Sheikh, A. Comparison between effectiveness of dentine desensitizer and one bottle self-etch adhesive on dentine hypersensitivity. Technol. Health Care 2021, 29, 1153–1159. [Google Scholar] [CrossRef]
- Pandit, N.; Gupta, R.; Bansal, A. Comparative evaluation of two commercially available desensitizing agents for the treatment of dentinal hypersensitivity. Indian J. Dent Res. 2012, 23, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, U.; Yildiz, E.; Kilic, I.; Yucel, T.; Ozel, S. The efficacy of three desensitizing agents used to treat dentin hypersensitivity. J. Am. Dent. Assoc. 2010, 141, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.R.; Silva, T.M.; Fonseca, B.M.; Sales, A.L.; Holleben, P.; Di Nicolo, R.; Borges, A.B. The effect of three desensitizing agents on dentin hypersensitivity: A randomized, split-mouth clinical trial. Oper. Dent. 2014, 39, E186–E194. [Google Scholar] [CrossRef] [PubMed]
- Nagakane, K.; Yoshida, Y.; Hirata, I.; Fukuda, R.; Nakayama, Y.; Shirai, K.; Ogawa, T.; Suzuki, K.; Van Meerbeek, B.; Okazaki, M. Analysis of Chemical Interaction of 4-MET with Hydroxyapatite Using XPS. Dent. Mater. J. 2006, 25, 645–649. [Google Scholar] [CrossRef] [Green Version]
- Ohkuma, K.; Shuichi, I.; Naohiro, T.; Takashi, A. Development of new monomers inducing dentin remineralization. Jpn. J. Conserv. Dent. 2009, 52, 330–339. [Google Scholar]
- Sugawara, Y.S.K.; Futaki, M.; Naruse, M.; Ono, M.; Hino, R.; Chiba, Y.; Arakaki, M.; Yamada, A.; Fukumoto, S. Evaluation of the optimal exposure settings for occlusal photography with digital cameras. Pediatr. Dent. J. 2014, 24, 89–96. [Google Scholar] [CrossRef]
- Vinagre, A.; Ramos, J.; Marques, F.; Chambino, A.; Messias, A.; Mata, A. Randomized clinical trial of five adhesive systems in occlusal restorations: One-year results. Dent. Mater. J. 2020, 39, 397–406. [Google Scholar] [CrossRef]
- De Angelis, F.; Mandatori, D.; Schiavone, V.; Melito, F.P.; Valentinuzzi, S.; Vadini, M.; Di Tomo, P.; Vanini, L.; Pelusi, L.; Pipino, C.; et al. Cytotoxic and Genotoxic Effects of Composite Resins on Cultured Human Gingival Fibroblasts. Materials 2021, 14, 5225. [Google Scholar] [CrossRef]
- Krifka, S.; Spagnuolo, G.; Schmalz, G.; Schweikl, H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 2013, 34, 4555–4563. [Google Scholar] [CrossRef]
- Xie, S.X.; Song, L.; Yuca, E.; Boone, K.; Sarikaya, R.; VanOosten, S.K.; Misra, A.; Ye, Q.; Spencer, P.; Tamerler, C. Antimicrobial Peptide-Polymer Conjugates for Dentistry. ACS Appl. Polym. Mater. 2020, 2, 1134–1144. [Google Scholar] [CrossRef]
- Suzuki, M.; Yamada, A.; Saito, K.; Hino, R.; Sugawara, Y.; Ono, M.; Naruse, M.; Arakaki, M.; Fukumoto, S. Application of a tooth-surface coating material containing pre-reacted glass-ionomer fillers for caries prevention. Pediatr. Dent. J. 2015, 25, 72–78. [Google Scholar] [CrossRef]
- Mazur, M.; Jedlinski, M.; Ndokaj, A.; Ardan, R.; Janiszewska-Olszowska, J.; Nardi, G.M.; Ottolenghi, L.; Guerra, F. Long-Term Effectiveness of Treating Dentin Hypersensitivity with Bifluorid 10 and Futurabond U: A Split-Mouth Randomized Double-Blind Clinical Trial. J. Clin. Med. 2021, 10, 2085. [Google Scholar] [CrossRef]
- Kusakabe, S.; Tsuruta, H.; Uno, M.; Burrow, M.F.; Nikaido, T. Clinical assessment of resin-coating technique applied to exposed dentin after crown preparation. Dent. Mater. J. 2022, 41, 226–229. [Google Scholar] [CrossRef]
- Thaweboon, S.; Saito, T.; Nagano, K.; Thaweboon, B. Evaluation of an Adhesive Containing Calcium Salt of Acidic Monomers on Inhibition of Biofilm Formation of Bacteria Related to Root Caries. Key Eng. Mater. 2020, 853, 41–45. [Google Scholar] [CrossRef]
- Qiu, Y.J.; Tang, J.; Saito, T. A novel bio-active adhesive monomer induces odontoblast differentiation: A comparative study. Int. Endod. J. 2020, 53, 1413–1429. [Google Scholar] [CrossRef]
- Qiu, Y.; Saito, T. Novel Bioactive Adhesive Monomer CMET Promotes Odontogenic Differentiation and Dentin Regeneration. Int. J. Mol. Sci. 2021, 22, 12728. [Google Scholar] [CrossRef]
- Fumiko, M.; Shuichi, I.; Nomann, N.A.; Takashi, S. Dentine bond strength and remineralization ability of sealing coat material containing a new developed adhesive monomer, CMET. Jpn. J. Conserv. Dent. 2015, 58, 143–156. [Google Scholar]
- Bernhardt, O.; Gesch, D.; Schwahn, C.; Mack, F.; Meyer, G.; John, U.; Kocher, T. Epidemiological evaluation of the multifactorial aetiology of abfractions. J. Oral Rehabil. 2006, 33, 17–25. [Google Scholar] [CrossRef]
- Sarode, G.S.; Sarode, S.C. Abfraction: A review. J. Oral Maxillofac. Pathol. 2013, 17, 222–227. [Google Scholar] [CrossRef]
- Noma, N.; Kakigawa, H.; Kozono, Y.; Yokota, M. Cementum crack formation by repeated loading in vitro. J. Periodontol. 2007, 78, 764–769. [Google Scholar] [CrossRef]
- Toledano, M.; Osorio, R.; de Leonardi, G.; Rosales-Leal, J.I.; Ceballos, L.; Cabrerizo-Vilchez, M.A. Influence of self-etching primer on the resin adhesion to enamel and dentin. Am. J. Dent. 2001, 14, 205–210. [Google Scholar] [PubMed]
- Perdigao, J.; Lopes, L.; Lambrechts, P.; Leitao, J.; Van Meerbeek, B.; Vanherle, G. Effects of a self-etching primer on enamel shear bond strengths and SEM morphology. Am. J. Dent. 1997, 10, 141–146. [Google Scholar] [PubMed]
HC | Liquid | acetone, methacrylic monomers (methyl methacrylate, 4-META), water, initiator |
Brush | aromatic amine, aromatic sulfinate salt | |
BC | Liquid | acetone, methacrylic esters (4-META), water, initiator |
Brush | aromatic amine, aromatic sulfinate salt, C-MET, MDCP |
Mand | Mand | Mand | Mand | Maxi | Maxi | Maxi | Maxi | ||
---|---|---|---|---|---|---|---|---|---|
Pre | Mol | Pre | Mol | Pre | Mol | Pre | Mol | Whole | |
Ling | Ling | Bucc | Bucc | Ling | Ling | Bucc | Bucc | ||
(n = 24) | (n = 26) | (n = 24) | (n = 26) | (n = 20) | (n = 26) | (n = 20) | (n = 26) | (n = 192) | |
1 week | 12.25 | 10.14 | 13.66 | 5.35 * | 6.50 * | 7.83 | 21.94 * | 20.84 * | 12.24 |
(95%CI) | (15.99–8.50) | (13.08–7.21) | (17.38–9.95) | (6.99–3.70) | (9.63–3.37) | (11.22–4.44) | (26.61–17.28) | (24.76–16.93) | (13.71–10.77) |
2 weeks | 5.83 | 5.77 | 8.43 | 3.37 * | 3.38 | 3.30 * | 18.10 * | 13.81 * | 7.57 |
(95%CI) | (7.69–3.07) | (8.16–3.37) | (10.95–5.91) | (5.02–1.72) | (5.64–1.13) | (5.11–1.48) | (22.20–14.00) | (17.49–10.12) | (8.75–6.39) |
3 weeks | 3.04 | 3.01 | 4.28 | 2.07 | 2.67 | 1.18 * | 11.82 * | 8.66 * | 4.57 |
(95%CI) | (4.43–1.65) | (4.19–1.84) | (5.38–3.17) | (3.17–0.98) | (4.32–1.01) | (2.77–0.86) | (15.10–8.55) | (10.78–6.55) | (5.32–3.82) |
4 weeks | 2.29 | 2.13 | 2.28 | 1.35 | 1.51 | 1.15 * | 8.50 * | 6.22 * | 3.11 |
(95%CI) | (3.47–1.11) | (3.05–1.20) | (3.24–1.32) | (2.24–0.47) | (2.64–0.37) | (1.83–0.48) | (11.40–5.60) | (8.30–4.15) | (3.72–2.49) |
Mand | Mand | Maxi | Maxi | Mand | Maxi | Ling | Bucc | Pre | Mol | |
---|---|---|---|---|---|---|---|---|---|---|
Ling | Bucc | Ling | Bucc | |||||||
(n = 50) | (n = 50) | (n = 46) | (n = 46) | (n = 100) | (n = 92) | (n = 96) | (n = 96) | (n = 88) | (n = 104) | |
1 week | 11.20 | 9.51 | 7.22 * | 21.35 * | 10.35 | 14.29 | 9.29 * | 15.19 | 13.54 | 11.04 |
(95%CI) | (13.58–8.81) | (11.82–7.19) | (9.57–4.88) | (24.36–18.34) | (12.02–8.68) | (16.68–11.89) | (11.01–7.57) | (17.41–12.97) | (15.75–11.32) | (12.96–9.13) |
2 weeks | 5.57 | 5.90 | 3.34 * | 15.77 * | 5.74 | 9.56 | 4.50 * | 10.64 * | 8.66 | 6.56 |
(95%CI) | (7.24–3.91) | (7.55–4.25) | (4.76–1.91) | (18.58–12.96) | (6.91–4.56) | (11.58–7.53) | (5.63–3.37) | (12.52–8.76) | (10.48–6.85) | (8.06–5.05) |
3 weeks | 3.03 | 3.18 | 2.20 * | 10.11 * | 3.10 * | 6.16 | 2.63 * | 6.50 * | 5.30 | 3.89 |
(95%CI) | (3.93–2.12) | (4.01–2.34) | (3.12–1.29) | (12.04–8.18) | (3.72–2.48) | (7.50–4.82) | (3.28–1.98) | (7.74–5.27) | (6.53–4.08) | (4.78–3.00) |
4 weeks | 2.21 | 1.82 | 1.32 * | 7.27 * | 2.01 * | 4.29 | 1.78 * | 4.43 | 3.53 | 2.71 |
(95%CI) | (2.96–1.46) | (2.48–1.15) | (1.95–0.69) | (9.03–5.51) | (2.52–1.51) | (5.41–3.18) | (2.28–1.28) | (5.50–3.37) | (4.53–2.53) | (3.46–1.97) |
Mand | Mand | Mand | Mand | Maxi | Maxi | Maxi | Maxi | ||
---|---|---|---|---|---|---|---|---|---|
Pre | Mol | Pre | Mol | Pre | Mol | Pre | Mol | Whole | |
Ling | Ling | Bucc | Bucc | Ling | Ling | Bucc | Bucc | ||
(n = 24) | (n = 26) | (n = 24) | (n = 26) | (n = 20) | (n = 26) | (n = 20) | (n = 26) | (n = 192) | |
1 week | 20.79 | 17.69 * | 27.36 | 9.55 * | 30.06 | 20.33 | 53.82 * | 51.06 * | 28.31 |
(95%CI) | (27.38–14.21) | (22.56–12.82) | (34.07–20.65) | (13.19–5.91) | (37.60–22.51) | (26.58–14.08) | (58.76–48.88) | (56.81–45.31) | (31.24–25.38) |
2 weeks | 9.28 * | 7.94 * | 15.88 | 5.50 * | 19.50 | 15.03 | 42.14 * | 38.30 * | 18.73 |
(95%CI) | (12.52–6.04) | (10.85–5.03) | (20.58–11.18) | (9.44–1.56) | (26.66–12.35) | (21.23–8.83) | (49.78–34.51) | (43.06–33.54) | (21.29–16.18) |
3 weeks | 6.17 * | 6.29 * | 10.52 | 4.49 * | 14.69 | 10.13 | 28.74 * | 29.01 * | 13.44 |
(95%CI) | (8.34–4.01) | (8.79–3.79) | (13.99–7.05) | (7.47–1.50) | (20.29–9.10) | (15.13–5.13) | (34.61–22.86) | (33.44–24.58) | (15.37–11.50) |
4 weeks | 4.13 | 4.58 | 5.24 | 2.12 * | 8.22 | 4.98 | 22.35 * | 22.55 * | 9.03 |
(95%CI) | (5.88–2.37) | (6.35–2.81) | (6.95–3.53) | (3.65–0.59) | (11.06–5.39) | (7.04–2.91) | (28.43–16.27) | (26.99–18.12) | (10.55–7.51) |
Mand | Mand | Maxi | Maxi | Mand | Maxi | Ling | Bucc | Pre | Mol | |
---|---|---|---|---|---|---|---|---|---|---|
Ling | Bucc | Ling | Bucc | |||||||
(n = 50) | (n = 50) | (n = 46) | (n = 46) | (n = 100) | (n = 92) | (n = 96) | (n = 96) | (n = 88) | (n = 104) | |
1 week | 19.24 * | 18.46 * | 24.79 | 52.33 * | 18.85 * | 38.56 * | 21.90 * | 34.71 * | 32.26 | 24.66 |
(95%CI) | (23.34–15.15) | (22.97–13.95) | (29.81–19.76) | (56.22–48.43) | (21.90–15.80) | (42.80–34.31) | (25.17–18.64) | (39.24–30.19) | (36.42–28.10) | (28.66–20.66) |
2 weeks | 8.61 * | 10.69 * | 17.08 | 40.06 * | 9.65 * | 28.57 * | 12.68 * | 24.79 * | 20.94 | 16.69 |
(95%CI) | (10.79–6.43) | (14.07–7.31) | (21.81–12.35) | (44.40–35.72) | (11.67–7.63) | (32.55–24.59) | (15.35–10.00) | (28.79–20.78) | (24.75–17.13) | (20.09–13.30) |
3 weeks | 6.23 * | 7.50 * | 12.22 | 28.88 * | 6.87 * | 20.55 * | 9.11 * | 17.77 * | 14.47 | 12.48 |
(95%CI) | (7.89–4.57) | (9.93–5.07) | (16.01–8.44) | (32.48–25.29) | (8.34–5.39) | (23.67–17.44) | (11.20–7.01) | (20.79–14.74) | (17.25–11.70) | (15.17–9.78) |
4 weeks | 4.35 * | 3.68 * | 6.46 | 22.46 * | 4.02 * | 14.46 * | 5.37 * | 12.70 * | 9.54 | 8.56 |
(95%CI) | (5.60–3.10) | (4.91–2.46) | (8.23–4.70) | (26.12–18.80) | (4.89–3.14) | (17.07–11.85) | (6.45–4.28) | (15.34–10.05) | (11.78–7.30) | (10.63–6.48) |
Mand | Mand | Mand | Mand | Maxi | Maxi | Maxi | Maxi | ||
---|---|---|---|---|---|---|---|---|---|
Pre | Mol | Pre | Mol | Pre | Mol | Pre | Mol | Whole | |
Ling | Ling | Bucc | Bucc | Ling | Ling | Bucc | Bucc | ||
(n = 24) | (n = 26) | (n = 24) | (n = 26) | (n = 20) | (n = 26) | (n = 20) | (n = 26) | (n = 192) | |
1 week | 0.0655 | 0.0450 * | 0.0104 * | 0.0872 | 0.0004 * | 0.0140 * | 1.2 × 10−6 * | 2.9 × 10−6 * | 3.5 × 10−11 * |
2 weeks | 0.0935 | 0.2251 | 0.0323 * | 0.2564 | 0.0037 * | 0.0118 * | 0.0050 * | 7.3 × 10−6 * | 3.9 × 10−8 * |
3 weeks | 0.0520 | 0.0638 | 0.0129 * | 0.1615 | 0.0049 * | 0.0198 * | 0.0012 * | 5.7 × 10−6 * | 4.5 × 10−9 * |
4 weeks | 0.1208 | 0.0578 | 0.2356 * | 0.2842 | 0.0032 * | 0.0140 * | 0.0050 * | 8.7 × 10−6 * | 4.4 × 10−7* |
Mand | Mand | Maxi | Maxi | Mand | Maxi | Ling | Bucc | Pre | Mol | |
---|---|---|---|---|---|---|---|---|---|---|
Ling | Bucc | Ling | Bucc | |||||||
(n = 50) | (n = 50) | (n = 46) | (n = 46) | (n = 100) | (n = 92) | (n = 96) | (n = 96) | (n = 88) | (n = 104) | |
1 week | 0.0113 * | 0.0090 * | 3.3 × 10−5 * | 1.3 × 10−11 * | 0.0005 * | 2.1 × 10−10 * | 3.0 × 10−6 * | 2.1 × 10−7 * | 7.2 × 10−6 * | 2.7 × 10−5 * |
2 weeks | 0.0658 | 0.0417 * | 0.0002 * | 2.5 × 10−8 * | 0.0105 * | 2.1 × 10−8 * | 7.5 × 10−5 * | 1.0 × 10−5 * | 3.5 × 10−6 * | 0.0002 * |
3 weeks | 0.0114 * | 0.0119 * | 0.0004 * | 3.8 × 10−8 * | 0.0007 * | 2.3 × 10−8 * | 3.8 × 10−5 * | 2.5 × 10−6 * | 1.8 × 10−6 * | 3.4 × 10−5 * |
4 weeks | 0.0233 * | 0.0347 * | 0.0002 * | 2.4 × 10−6 * | 0.0033 * | 1.2 × 10−6 * | 3.1 × 10−5 * | 5.0 × 10−5 * | 0.0003 * | 0.0002 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadano, M.; Nakamura, T.; Hoshikawa, S.; Hino, R.; Maruya, Y.; Yamada, A.; Fukumoto, S.; Saito, K. The Retention Effect of Resin-Based Desensitizing Agents on Hypersensitivity—A Randomized Controlled Trial. Materials 2022, 15, 5172. https://doi.org/10.3390/ma15155172
Tadano M, Nakamura T, Hoshikawa S, Hino R, Maruya Y, Yamada A, Fukumoto S, Saito K. The Retention Effect of Resin-Based Desensitizing Agents on Hypersensitivity—A Randomized Controlled Trial. Materials. 2022; 15(15):5172. https://doi.org/10.3390/ma15155172
Chicago/Turabian StyleTadano, Manami, Tomoaki Nakamura, Seira Hoshikawa, Ryoko Hino, Yuriko Maruya, Aya Yamada, Satoshi Fukumoto, and Kan Saito. 2022. "The Retention Effect of Resin-Based Desensitizing Agents on Hypersensitivity—A Randomized Controlled Trial" Materials 15, no. 15: 5172. https://doi.org/10.3390/ma15155172
APA StyleTadano, M., Nakamura, T., Hoshikawa, S., Hino, R., Maruya, Y., Yamada, A., Fukumoto, S., & Saito, K. (2022). The Retention Effect of Resin-Based Desensitizing Agents on Hypersensitivity—A Randomized Controlled Trial. Materials, 15(15), 5172. https://doi.org/10.3390/ma15155172