Determination of 238U and 40K Radionuclide Concentrations in Some Granite Rocks by Gamma Spectroscopy and Energy Dispersive X-ray Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Gamma Spectrometer Method
2.3. EDX Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohanty, A.K.; Sengupta, D.; Das, S.K.; Saha, S.K.; Van, K.V. Natural radioactivity and radiation exposure in the high background area at Chhatarpur beach placer deposit of Orissa, India. J. Environ. Radioact. 2004, 75, 15–33. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations Scientific Committee on the Sources and Effects of Ionizing Radiation, 2008 Report to the General Assembly, with Scientific Annexes. Annexes C, D and E; UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation: Vienna, Austria, 2008; Volume 80527, p. 1180527. [Google Scholar]
- Alshahri, F. Radioactivity of 226Ra, 232Th, 40Kand 137Cs in beach sand and sediment near to desalination plant in eastern Saudi Arabia: Assessment of radiological impacts. J. King Saud Univ. Sci. 2017, 29, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Shaban, S.; El-Mongy, S.A. Validation of scanning electron microscope (SEM), energy dispersive X-ray (EDX) and gamma spectrometry to verify source nuclear material for safeguards purposes. J. Radioanal. Nucl. Chem. 2013, 296, 1219–1224. [Google Scholar] [CrossRef]
- Vesterbacka, P.; Klemola, S.; Salahel-Din, K.; Saman, M. Comparison of analytical methods used to determine 235U, 238U and 210Pb from sediment samples by alpha beta and gamma spectrometry. J. Radioanal. Nucl. Chem. 2009, 281, 441–448. [Google Scholar] [CrossRef]
- Fernández, A.; Martínez, T.; Navarrete, M.; Zúñiga, M.A. Validation of the Quantification Method for Potassium by Means of 40K γ-Radiation. INCS News 2012, 9, 4–8. [Google Scholar]
- Khater, A.E. Polonium-210 budget in cigarettes. J. Environ. Radioact. 2004, 71, 33–41. [Google Scholar] [CrossRef]
- Ahmed, N.K. Measurement of natural radioactivity in building materials in Quena City, Upper Egypt. In Proceedings of the Fourth Radiation Physics Conference, Alexandria, Egypt, 15–19 November 1999. [Google Scholar]
- Beretaka, J.; Mathew, P.J. Measurements of radionuclides in food and the environment. In Technical Reports Series 295; IAEA: Vienna, Austria, 1985. [Google Scholar]
- Diab, H.; El-Tahawy, M.; El-Mongy, S. Evaluation of the natural and man-made radioactivity levels around the Egyptian nuclear facilities. Radiochim. Acta 2001, 89, 179–185. [Google Scholar] [CrossRef]
- Liritzis, I.; Mavrikis, D.; Zacharias, N.; Sakalis, A.; Tsirliganis, N.; Polymeris, G.S. Potassium determination using SEM, FAAS and XRF: Some experimental notes. Mediterr. Archaeol. Archaeom. 2011, 11, 169–179. [Google Scholar]
- Goldstein, J.; Newbury, D.E.; Joy, D.C.; Lyman, C.E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J.R. Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Papp, Z.; Dezso, Z.; Daroczy, S. Measurement of the radioactivity of 238U, 232Th, 226Ra, 137Cs and 40K in soil using direct Ge(Li) g-ray spectroscopy. J. Radioanal. Nucl. Chem. 1997, 222, 171–176. [Google Scholar] [CrossRef]
- Ebaid, Y.Y.; El-Mongy, S.A.; Allam, K.A. 235U gamma emission contribution to the 186 keV energy transition of 226Ra in environmental samples activity calculations. In International Congress Series; Elsevier: Amsterdam, The Netherlands, 2005; Volume 1276, pp. 409–411. [Google Scholar]
- Delgado, J.U.; Morel, J.; Etcheverry, M. Measurements of photon emission probabilities from the decay of 226Ra and daughters. Appl. Radiat. Isot. 2002, 56, 137–143. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement; John Wiley and Sons: New York, NY, USA, 1979; pp. 233–268. [Google Scholar]
- Ebaid, Y.Y.; El-Tahawy, M.S.; El-Lakany, A.A.; Garcia, S.R.; Brooks, G.H. Environmental radioactivity measurements of Egyptian soils. J. Radioanal. Nucl. Chem. 2000, 243, 543–550. [Google Scholar] [CrossRef]
- Khater, A.E.M.; Ebaid, Y.Y. A simplified gamma-ray self-attenuation correction in bulk samples. Appl. Radiat. Isot. 2008, 66, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Scott, V.D.; Love, G. Quantitative Electron Probe Microanalysis, 2nd ed.; Ellis Horwood: Chichester, UK, 1994. [Google Scholar]
- Wakisaka, T.; Morita, N.; Wakasa, M.; Terada, S.; Nishihagi, K.; Taniguchi, K. Development of energy dispersive X-ray fluorescence spectrometer with monochromatic excitation the direct determination of trace elements in organic matrices. Bunseki Kagaku 1996, 45, 933–939. [Google Scholar] [CrossRef] [Green Version]
- Gürol, A. Measurements of the K X-ray intensity ratios by using energy-dispersive X-ray fluorescence spectrometry. Appl. Radiat. Isot. 2008, 66, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Sitko, R.; Zawisza, B.; Malicka, E. Energy-dispersive X-ray fluorescence spectrometer for analysis of conventional and micro-samples: Preliminary assessment. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 436–441. [Google Scholar] [CrossRef]
- Ghoshal, N.S. Nuclear Physics; S.Chand & Company Ltd.: New Delhi, India, 1994; Volume 11055, pp. 156–165. [Google Scholar]
- Firestone, R.B.; Shirley, V.S. Table of Isotopes; John Willey & Sons, NC.: New York, NY, USA, 1996; Volume 1–2. [Google Scholar]
Marking Code | Type of the Samples | Commercial Name | Quarry Sites |
---|---|---|---|
G1-G5 | granite | Gandola | Sinai |
R1-R5 | granite | Red Aswani | Halayeb |
W1-W5 | granite | White Halayeb | Aswan |
Granite Type | Sample | Radionuclide Specific Activity Bq/Kg | |
---|---|---|---|
226Ra at 186.2 keV | 40K at 1460 keV | ||
Gandola | G1 | 235.2 ± 19 | 1235.5 ± 49 |
G2 | 225.2 ± 11 | 1226.3 ± 37 | |
G3 | 218.3 ± 24 | 1219.7 ± 61 | |
G4 | 245.2 ± 22 | 1216.3 ± 49 | |
G5 | 230.7 ± 27 | 1220.2 ± 24 | |
SD | 10.2 | 8.0 | |
Average | 230.92 ± 21 | 1223.6 ± 44 | |
Red Aswani | R1 | 80 ± 6 | 1214.8 ± 49 |
R2 | 65.3 ± 3 | 1223.9 ± 22 | |
R3 | 72 ± 8 | 1227.7 ± 52 | |
R4 | 60.4 ± 5 | 1236.7 ± 41 | |
R5 | 45.2 ± 5 | 1226.5 ± 25 | |
SD | 13.1 | 7.9 | |
Average | 65 ± 6 | 1226 ± 44 | |
White Halayeb | W1 | 45.5 ± 4 | 8.2 ± 1.5 |
W2 | 19.5 ± 1 | 15.0 ± 1.7 | |
W3 | 33.6 ± 4 | 25 ± 3.5 | |
W4 | 50.2 ± 5 | 11 ± 1.6 | |
W5 | 18.5 ± 2 | 21 ± 2.3 | |
SD | 14.5 | 6.9 | |
Average | 33 ± 3 | 16 ± 2 |
Radionuclide | Ra-226 | K-40 |
---|---|---|
Energy (keV) | 186.2 | 1460 |
MDA (Bq/Kg) | 9.5 | 3.5 |
Analyst | Result | Ref. Value | Bias % | Acceptance Range |
---|---|---|---|---|
Cesium-134 | 24.98 | 23.5 | 1.37 | 16.5–30.6 |
Cesium-137 | 21.09 | 19.1 | 1.53 | 13.4–24.8 |
Cobalt-57 | 33.31 | 29.9 | 2.5 | 20.9–38.9 |
Potassium-40 | 0.09 | 0.09 | False-positive test | |
Zinc-65 | 15.53 | 18.3 | 1.61 | 12.8–23.8 |
Granite Rock Type | U Content (PPM) | Equivalent 238U Specific Activity (Bq/Kg) | R.D (%) |
---|---|---|---|
Gandola | 20 | 243 ± 12 | 5.4 |
Red Aswani | 7.25 | 68.5 ± 8 | 3.7 |
White Halayeb | Below detection limit | - | - |
Granite Rock Type | K content (PPM) | Equivalent 40K specific activity(Bq/Kg) | R.D% |
Gandola | 37,700 | 1196.6 ± 3 | 2.2 |
Red Aswani | 38,000 | 1206.2 ± 2 | 1.6 |
White Halayeb | Below detection limit | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghamdi, H.; El-Nahal, M.A.; Saleh, I.H.; Elsafi, M.; Sayyed, M.I.; Almuqrin, A.H. Determination of 238U and 40K Radionuclide Concentrations in Some Granite Rocks by Gamma Spectroscopy and Energy Dispersive X-ray Analysis. Materials 2022, 15, 5130. https://doi.org/10.3390/ma15155130
Al-Ghamdi H, El-Nahal MA, Saleh IH, Elsafi M, Sayyed MI, Almuqrin AH. Determination of 238U and 40K Radionuclide Concentrations in Some Granite Rocks by Gamma Spectroscopy and Energy Dispersive X-ray Analysis. Materials. 2022; 15(15):5130. https://doi.org/10.3390/ma15155130
Chicago/Turabian StyleAl-Ghamdi, Hanan, M. A. El-Nahal, I. H. Saleh, Mohamed Elsafi, M. I. Sayyed, and Aljawhara H. Almuqrin. 2022. "Determination of 238U and 40K Radionuclide Concentrations in Some Granite Rocks by Gamma Spectroscopy and Energy Dispersive X-ray Analysis" Materials 15, no. 15: 5130. https://doi.org/10.3390/ma15155130
APA StyleAl-Ghamdi, H., El-Nahal, M. A., Saleh, I. H., Elsafi, M., Sayyed, M. I., & Almuqrin, A. H. (2022). Determination of 238U and 40K Radionuclide Concentrations in Some Granite Rocks by Gamma Spectroscopy and Energy Dispersive X-ray Analysis. Materials, 15(15), 5130. https://doi.org/10.3390/ma15155130