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Abstract: Uranium-238 (238U) and potassium-40 (40K) are important naturally occurring radionu-
clides. Gamma spectroscopy is a direct, non-destructive method used to determine radionuclide
concentrations, but it suffers from the interference of gamma lines. 40K gamma spectroscopy is
affected by background interference, which leads to a reduction in the minimum detectable activity.
The energy dispersive X-ray analytical technique is quick, with fewer interference problems or back-
ground effects. However, it is an indirect method for calculating and deducing the concentrations of
isotopes. The aim of the present study was to compare and evaluate both techniques so that they
can be utilized efficiently. The results of 238U and 40K were measured by well-calibrated gamma
spectroscopy and energy dispersive X-ray techniques. the results indicated that Halayeb White
granite is the most environmentally safe compared to the other two types because it contains a very
low concentration of uranium 238 and potassium 40.

Keywords: radionuclide concentration; granite rocks; gamma-ray spectroscopy; EDX; 238U; 40K

1. Introduction

Radiation exposure from natural and artificial sources is a persistent and unavoidable
hazard. The major effects on humankind come from natural radiation sources, and the
global average effective dose per person is 2.4 mSv per year. Natural sources comprise 80%
of the total dose that humans receive [1]. The primary contribution is due to naturally oc-
curring radioisotopes in the Earth’s crust, such as 232Th, 238U, and 40K. These radioisotopes
exist extensively in the lithosphere and are found in mineral ores, soils, rocks, etc. Due to
the break-down and weathering of rocks, 40K can be transferred to food pathways.

The average worldwide specific activity values of 40K, 238U, and 232Th in soil are 400,
37, and 33 Bq/kg, respectively. Cancer is one of the most detrimental radiation adverse
health effects. Hence, the accurate determination of naturally occurring isotopes is essential
for determining the radiation health hazard indices to estimate the risk level due to potential
exposure to background radiation [2,3].

Previous studies have demonstrated various detection and measuring techniques to
determine the concentration of 40K and 238U in different environmental matrices [4–6].
Gamma spectroscopy is the standard method used to measure the specific concentration
of 40K in soil or natural rock due to the 40K gamma line at 1460.8 keV, with a considerable
intensity of 10.66% [7]. On the other hand, alpha spectroscopy is a suitable method for
directly determining specific 238U concentrations, but it suffers from complex chemical

Materials 2022, 15, 5130. https://doi.org/10.3390/ma15155130 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15155130
https://doi.org/10.3390/ma15155130
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-7924-9209
https://orcid.org/0000-0002-6253-2630
https://orcid.org/0000-0001-8576-9561
https://orcid.org/0000-0003-3040-8878
https://doi.org/10.3390/ma15155130
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15155130?type=check_update&version=2


Materials 2022, 15, 5130 2 of 11

preparation and tracing methods prior to measuring. Hence, gamma spectroscopy domi-
nates the detection process of 40K and 238U if the secular equilibrium between 226Ra (the
last nongaseous daughter of 238U) is expected, as in the case of natural minerals and rocks
such as granite [8].

Gamma spectroscopy is a simple and direct method that does not require chemical
preparation and tracing complexities. However, it has the disadvantage of gamma line
interference, as in the case of 235U and 226Ra at 185.7 and 186.2 keV, respectively. Fur-
thermore, to obtain accurate results, gamma spectroscopy takes a long time to achieve
sufficient counts to reduce uncertainty and statistical error, especially in the case of very
low-concentration environmental tracing radioisotopes [9–11].

Using an energy dispersive X-ray (EDX) spectrometer to determine the elemental
composition is very common during the analysis of environmental and geological samples.
Deducing the radioisotope weight ratios from the elemental composition is theoretically
possible by assuming that isotopic natural abundance ratios are preserved. The EDX
technique is rapid, reliable, and does not require complicated sample preparation [12,13].

In this study, the gamma spectroscopy and EDX methods are discussed and compared
in terms of detection limits, uncertainty, and accuracy. We illustrate the limitations of each
analytical method and their most efficient uses to determine 40K and 238U concentrations in
natural rocks, minerals, and environmental samples under the secular equilibrium of 238U
and 226Ra by investigating three different types of granites rocks with expected various
concentrations of 40K and 238U. The expected achievement of this comparative study is to
determine when the technique is most efficient and what its limitations are.

2. Materials and Methods
2.1. Samples

Three different natural granite types are shown in Table 1: Gandola, Red Aswani,
and White Halayeb. The samples were collected from various places in Egypt, as shown
in Figure 1. Five samples were obtained from each kind of granite rock. Small pieces of
each type of granite were ground, and then the produced powder was stirred and mixed
thoroughly until achieving a homogenous fine powder.

Table 1. Sample markings, descriptions, and locations.

Marking Code Type of the Samples Commercial Name Quarry Sites

G1-G5 granite Gandola Sinai

R1-R5 granite Red Aswani Halayeb

W1-W5 granite White Halayeb Aswan
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2.2. Gamma Spectrometer Method

The radiation measurements were performed by using a high-resolution gamma
spectroscopy system. It consisted of a high-purity germanium detector, the “HPGe” (see
Figure 2) model CS20-A31CL, with a multi-channel analyzer (MCA) of 4022 channels at the
Institute of Graduate Studies and Research, Alexandria University, Egypt. The detection
system’s relative efficiency is 24.5% for 1333 keV of 60Co-line for the efficiency of the
(3′′ × 3′′) NaI scintillation detector at 25 cm from the radiation source. The achieved energy
resolution was 0.93 keV at the 122 keV gamma line and 1.95 keV at the 1333 keV gamma
line of 60Co.
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The secular equilibrium between 238U and 226Ra was utilized to determine the 238U
concentration by using the 186.2 keV gamma line of 226Ra after correction to remove 235U
interference. The specific activity (Bq Kg−1) for dry mass (M) was calculated by [14]:

AS =
NT

ε(E)× Iγ(E)×M
(1)

where NT, ε, and Iγ are the total count rate, efficiency of the HPGe detector, and relative
intensity of peak energy E, respectively. The total count rate of the 186.2 keV line includes
226Ra (186.2 keV, 3.555%) and 235U (185.7 keV, 57%), where NT = N226Ra + N235U and the
relation between the total count rate and count rate of 226Ra is given by [15]:

N226Ra = 0.572× NT (2)
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Thus, we can calculate the specific activity of 238U using Equation (3) [16,17]:

(As)238U
=

0.572× NT

ε186.2
238U
× (Iγ)

186.2
238U
×M

(3)

The minimum detectable activity (MDA) is related to detector sensitivity and can be
defined as the smallest amount of activity distinguishable from the background, which
can be quantified at a given confidence level (usually 95%). The minimum detectable
activity was automatically calculated using the Genie 2000 data acquisition and analysis
software [14], as follows:

MDA =
1.65×

√
B

ε× B.R× T ×M
(4)

Proper detector energy and efficiency calibrations were conducted before the measure-
ment. The acquisition time was chosen to obtain sufficient counts under each photopeak so
that the statistical uncertainty was below 1% (with a measuring time of 12 h). The spectrum
was analyzed by using the Genie 2000 data acquisition and analysis software (made by
Canberra), which is an integrated set for counting and analyzing spectra to calculate the
net count rate at 186.2 keV and 1460 keV, as shown in Figure 3.
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discussed granite samples.

A 0.5 kg powder sample was enclosed in a 0.5 L Marinelli beaker to acquire the 4Π
counting geometry. It was placed inside lead shielding to reduce the background and
obtain a lower minimum detectable activity. The background was determined by allowing
the detector to count a blank sample of an empty 0.5 L Marinelli beaker for long enough to
acquire a good statistical result of the background measurement. Then, the background
spectra were subtracted from the gross sample spectrum under each photo-peak of interest
to obtain the net count of each photo-peak [18,19].
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2.3. EDX Method

The elemental potassium and uranium concentrations of the investigated samples
were determined through the energy dispersion X-ray (EDX) unit of the electron scanning
microscope (SEM) at the city of scientific research in Alexandria, Egypt. Uranium is a trace
element in granites, making accurate detection with EDX difficult. Therefore, each sample
was scanned by the electron microscope for multiple scans (with repeated measurements),
targeting different regions of one sample to perform a comprehensive scan for each sample.
The measuring time was selected to be the maximum time allowed by the instrument
(30 min), while increasing the beam current as much as possible to ensure the accurate
determination of the elemental concentration inside the sample. A schematic diagram of
an EDX micro-analysis method is shown in Figure 4 [20].
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The detection limit of an EDX system is affected by bremsstrahlung radiation—with
lower concentrations, statistical errors and uncertainties are higher. Further, the detection
limits for heavy elements (using the L or M lines) such as uranium tend to increase because
the peak-to-background ratio is lower than it is for K lines [21]. The detection limit of the
EDX system can be estimated from the following equation [22]:

CDL ≥
3
√

N(B)
N(S)− N(B)

Cs (5)

where N(B) is the average background count, N(S) is the average count of the standard,
and Cs is the concentration of the standard. The specific activity concentration of the
radionuclides can be estimated theoretically from the elemental concentration given by
EDX [23,24]:

As = λ × N (6)

where λ is the decay constant of the radionuclide and N is the number of radionuclides in a
1 kg granite sample, which can be given by [25]:

N =
C× R× NA × 1000

W
(7)

where C is the elemental concentration of mass percentage in the granite sample estimated
from EDX, R is the isotopic abundance, NA is the Avogadro’s number, and W is the atomic
weight of the radionuclide.
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3. Results and Discussion

First, the HPGe detector was calibrated (energy and efficiency calibration) using three
point sources for the energy calibration—241Am (59.54 keV), 137Cs (661.65 keV), and 60Co
(1173 and 1333 keV)—while the 152Eu volumetric source (121.8, 244.7, 344.3, 444, 778.9,
867.4, 964.0, 1112.1, and 1408.0 keV) for the efficiency calibration was as shown in Figure 5.
From the efficiency calibration curve, as shown in Figure 5b, the equation for the efficiency
as a function of energy was obtained. From this equation, the detector’s efficiency was
calculated at 186.2 keV (226Ra) and 1460 keV (40K).
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Calculating the count rate and corresponding efficiency of each energy and substituting
this into Equation (1), the specific activity of the different radionuclide (AS) samples and
the average values were calculated. The values were determined for each site based on the
gamma ray spectrometer method for U-238 and K-40 (Figures 6 and 7, respectively).
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The specific activity was calculated for five samples of each type, and the specific
activity of U-238 for all Gandola samples was higher than the Red Aswani granite, while
the lowest specific activity resulted from the white Halayeb granite. On the other hand, the
specific activity was nearly equal for the K-40 for the Gandola and Red Aswani samples,
and the activity was almost non-existent in the white Halayeb granite.

The results are tabulated in Table 2, including the average value for each granite type
and the standard deviation. The results showed that the Gandola granite had the highest
238U concentration compared with the other two types of granite, while White Halayeb
had the lowest concentration. Furthermore, the 40K concentration was nearly constant
in both Gandola and Red Aswani, while the 40K concentration for White Halayeb was
insignificant compared to Gandola and Red Aswani. The standard deviations (SDs) in the
U-238 radionuclide were 10.2, 13.1, and 14.5 for Gandola, Red Aswani, and White Halayeb,
respectively. Meanwhile, in K-40, the SDs were 8, 7.9, and 6.9 for Gandola, Red Aswani,
and White Halayeb, respectively.

The minimum detectable activities of the radionuclides under study are listed in
Table 3. The minimum detectable activity (MDA) of 40K was lower than the MDA of 226Ra.
This might be due to the intensity of the 40K gamma line at 1460 (10.6%), which is higher
than 226Ra at 186.2 keV (3.64%).

Table 2. Radionuclide specific activity (Bq/Kg) for the different samples by the gamma ray spectrom-
eter method.

Granite Type Sample
Radionuclide Specific Activity Bq/Kg

226Ra at 186.2 keV 40K at 1460 keV

Gandola

G1 235.2 ± 19 1235.5 ± 49

G2 225.2 ± 11 1226.3 ± 37

G3 218.3 ± 24 1219.7 ± 61

G4 245.2 ± 22 1216.3 ± 49

G5 230.7 ± 27 1220.2 ± 24

SD 10.2 8.0

Average 230.92 ± 21 1223.6 ± 44
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Table 2. Cont.

Granite Type Sample
Radionuclide Specific Activity Bq/Kg

226Ra at 186.2 keV 40K at 1460 keV

Red Aswani

R1 80 ± 6 1214.8 ± 49

R2 65.3 ± 3 1223.9 ± 22

R3 72 ± 8 1227.7 ± 52

R4 60.4 ± 5 1236.7 ± 41

R5 45.2 ± 5 1226.5 ± 25

SD 13.1 7.9

Average 65 ± 6 1226 ± 44

White Halayeb

W1 45.5 ± 4 8.2 ± 1.5

W2 19.5 ± 1 15.0 ± 1.7

W3 33.6 ± 4 25 ± 3.5

W4 50.2 ± 5 11 ± 1.6

W5 18.5 ± 2 21 ± 2.3

SD 14.5 6.9

Average 33 ± 3 16 ± 2

Table 3. The minimum detectable activity of the radionuclides of interest.

Radionuclide Ra-226 K-40

Energy (keV) 186.2 1460

MDA (Bq/Kg) 9.5 3.5

The absolute efficiency calibration of the gamma spectroscopy was validated using
radioactive mixed standard sets in a soil matrix in 1000 mL Marinelli beakers. The quality
control soil samples (supplied through the proficiency testing Mixed Analytic Performance
Evaluator Program (MAPEP), organized by the Department of Energy in the United States)
were measured in parallel with the analyzed samples to keep a bias of <5%, as in the
laboratory criteria. Table 4 lists the most recent participation in the MAPEP program, which
coincided with the sample measuring. Meanwhile, the EDX measurement accuracy was
evaluated using the IAEA-312 soil matrix reference material for U determination and a
high-analytical-purity potassium chloride for potassium measurement. The bias of the
laboratory value was 3.6% for uranium and 1.5% for potassium.

Table 4. The most recent participation in the MAPEP program.

Analyst Result Ref. Value Bias % Acceptance Range

Cesium-134 24.98 23.5 1.37 16.5–30.6

Cesium-137 21.09 19.1 1.53 13.4–24.8

Cobalt-57 33.31 29.9 2.5 20.9–38.9

Potassium-40 0.09 0.09 False-positive test

Zinc-65 15.53 18.3 1.61 12.8–23.8

According to Section 2.3, the specific activity was calculated for the same samples
and compared with the gamma spectroscopic results, as shown in Figure 8. The relative
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deviation was calculated between the two results and tabulated in Table 5. The relative
deviation between the EDX analysis and gamma ray spectroscopy was determined as:

R.D(%) =
(AS)EDX − (AS)Gamma

(AS)EDX
× 100 (8)
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Table 5. The elemental contents and equivalent specific activity for the three types of granites, as well
as the relative deviation between the two presented methods.

Granite Rock Type U Content (PPM) Equivalent 238U Specific
Activity (Bq/Kg)

R.D (%)

Gandola 20 243 ± 12 5.4

Red Aswani 7.25 68.5 ± 8 3.7

White Halayeb Below detection limit - -

Granite Rock Type K content (PPM) Equivalent 40K specific activity(Bq/Kg) R.D%

Gandola 37,700 1196.6 ± 3 2.2

Red Aswani 38,000 1206.2 ± 2 1.6

White Halayeb Below detection limit - -

The results in Table 5 showed good agreement between the two methods, where
the R.D in all types of rocks was ≤ 6%. This indicates the correctness of using the EDX
analysis method without exposure to gamma rays when calibrating the device. The results
indicated that EDX is an effective and reliable method for high concentrations, while
gamma ray spectroscopy is more effective for low radionuclide contents, but with a high
degree of uncertainty.

4. Conclusions

The concentrations of uranium-238 (238U) and potassium-40 (40K) in the three different
types of granite (Gandola, Aswani Red, and White Halayeb) were determined for each
type of the five samples using gamma ray spectroscopy and EDX analysis, and the average
value was calculated. The results of the two methods showed a good agreement between
the radionuclide concentration measurements. The results show that the EDX analysis
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method is fast, and it is recommended in the case of high concentrations, while gamma
spectroscopy is more suitable in the case of low radionuclide content, but with a high
degree of uncertainty. Finally, the results indicated that Halayeb White granite is the most
environmentally safe compared to the other two types because it contains a very low
concentration of uranium 238 and potassium 40.
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