Role of Gypsum Content on the Long-Term Performance of Lime-Stabilised Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Kaolin
2.1.2. Sulfate
2.1.3. Lime
2.2. Mix Compositions
2.3. Specimen Preparation
2.4. Testing Method
2.4.1. Unconfined Compressive Strength (UCS)
2.4.2. Swelling
2.4.3. Thermogravimetric and Derivative Thermogravimetric Analysis (TG/DTG)
3. Results
3.1. Unconfined Compressive Strength (UCS)
3.2. Linear Expansion
3.3. Derivative-Thermogravimetric Analysis (DTG)
4. Discussion
5. Conclusions
- The addition of lime to kaolin soil in the absence of gypsum increases the compressive strength and reduces the expansion through the change of fabric (cation exchange, flocculation/agglomeration of soil particles) and the formation of pozzolanic reactions. However, in the presence of sulfate, lime can yield a higher strength magnitude, but it also induces a drastic expansion due to the formation of an excessive ettringite.
- The consumption of gypsum during the nucleation and growth of ettringite in lime-stabilised gypsum-bearing soil is a function of lime content, moisture content, and curing condition.
- The presence of sulfate (gypsum) increases the compressive strength and the expansion of lime-stabilised soil as the gypsum content increases, with a more pronounced effect at a higher gypsum content and higher lime content. This is because the amount of formed ettringite is a function of both lime and gypsum contents. Under the sealed condition, the ettringite improves the strength through the reduction of porosity and interlocking of the matrix, while under the water soaking condition, it causes expansion due to its higher water absorption capability.
- The strength and expansion performance of lime-stabilised soil were directly proportional to the gypsum (G) and lime (L) content, of which a G/L ratio of 1.5 yielded the optimum condition for the UCS and the worst-case scenario for the expansion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garzón, E.; Cano, M.; OKelly, B.C.; Sánchez-Soto, P.J. Effect of Lime on Stabilization of Phyllite Clays. Appl. Clay Sci. 2016, 123, 329–334. [Google Scholar] [CrossRef]
- Castro-Fresno, D.; Movilla-Quesada, D.; Vega-Zamanillo, Á.; Calzada-Pérez, M.A. Lime Stabilization of Bentonite Sludge from Tunnel Boring. Appl. Clay Sci. 2011, 51, 250–257. [Google Scholar] [CrossRef]
- Modarres, A.; Nosoudy, Y.M. Clay Stabilization Using Coal Waste and Lime—Technical and Environmental Impacts. Appl. Clay Sci. 2015, 116–117, 281–288. [Google Scholar] [CrossRef]
- George, S.Z.; Ponniah, D.A.; Little, J.A. Effect of Temperature on Lime-Soil Stabilization. Constr. Build. Mater. 1992, 6, 247–252. [Google Scholar] [CrossRef]
- Di Sante, M.; Fratalocchi, E.; Mazzieri, F.; Pasqualini, E. Time of Reactions in a Lime Treated Clayey Soil and Influence of Curing Conditions on Its Microstructure and Behaviour. Appl. Clay Sci. 2014, 99, 100–109. [Google Scholar] [CrossRef]
- Khemissa, M.; Mahamedi, A. Cement and Lime Mixture Stabilization of an Expansive Overconsolidated Clay. Appl. Clay Sci. 2014, 95, 104–110. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, Y.; Zhang, Y.; Wang, Y. Effect of Fines on the Mechanical Properties of Composite Soil Stabilizer-Stabilized Gravel Soil. Constr. Build. Mater. 2016, 126, 701–710. [Google Scholar] [CrossRef]
- Shih, J.Y.; Chang, T.P.; Hsiao, T.C. Effect of Nanosilica on Characterization of Portland Cement Composite. Mater. Sci. Eng. A 2006, 424, 266–274. [Google Scholar] [CrossRef]
- Hossain, K.M.A.; Mol, L. Some Engineering Properties of Stabilized Clayey Soils Incorporating Natural Pozzolans and Industrial Wastes. Constr. Build. Mater. 2011, 25, 3495–3501. [Google Scholar] [CrossRef]
- Jamsawang, P.; Nuansrithong, N.; Voottipruex, P.; Songpiriyakij, S.; Jongpradist, P. Laboratory Investigations on the Swelling Behavior of Composite Expansive Clays Stabilized with Shallow and Deep Clay-Cement Mixing Methods. Appl. Clay Sci. 2017, 148, 83–94. [Google Scholar] [CrossRef]
- Ho, L.S.; Nakarai, K.; Duc, M.; Le Kouby, A.; Maachi, A.; Sasaki, T. Analysis of Strength Development in Cement-Treated Soils under Different Curing Conditions through Microstructural and Chemical Investigations. Constr. Build. Mater. 2018, 166, 634–646. [Google Scholar] [CrossRef]
- Hotineanu, A.; Bouasker, M.; Aldaood, A.; Al-Mukhtar, M. Effect of Freeze-Thaw Cycling on the Mechanical Properties of Lime-Stabilized Expansive Clays. Cold Reg. Sci. Technol. 2015, 119, 151–157. [Google Scholar] [CrossRef]
- Jha, A.K.; Sivapullaiah, P.V. Physical and Strength Development in Lime Treated Gypseous Soil with Fly Ash—Micro-Analyses. Appl. Clay Sci. 2017, 145, 17–27. [Google Scholar] [CrossRef]
- Wang, Z.; Sigdel, P.; Hu, L. Chemo-Mechanical Interactions in the Ettringite Induced Expansion of Sulfate-Bearing Soils. Geosciences 2019, 9, 375. [Google Scholar] [CrossRef] [Green Version]
- Aldaood, A.; Bouasker, M.; Al-Mukhtar, M. Geotechnical Properties of Lime-Treated Gypseous Soils. Appl. Clay Sci. 2014, 88–89, 39–48. [Google Scholar] [CrossRef]
- Aldaood, A.; Bouasker, M.; Al-Mukhtar, M. Free Swell Potential of Lime-Treated Gypseous Soil. Appl. Clay Sci. 2014, 102, 93–103. [Google Scholar] [CrossRef]
- Jha, A.K.; Sivapullaiah, P.V. Role of Gypsum on Microstructure and Strength of Soil. Environ. Geotech. 2016, 3, 78–89. [Google Scholar] [CrossRef]
- Jha, A.K.; Sivapullaiah, P.V. Susceptibility of Strength Development by Lime in Gypsiferous Soil-A Micro Mechanistic Study. Appl. Clay Sci. 2015, 115, 39–50. [Google Scholar] [CrossRef]
- Amakye, S.Y.O.; Abbey, S.J.; Booth, C.A.; Oti, J. Road Pavement Thickness and Construction Depth Optimization Using Treated and Untreated Artificially-Synthesized Expansive Road Subgrade Materials with Varying Plasticity Index. Materials 2022, 15, 2773. [Google Scholar] [CrossRef]
- Seco, A.; Ramírez, F.; Miqueleiz, L.; García, B. Stabilization of Expansive Soils for Use in Construction. Appl. Clay Sci. 2011, 51, 348–352. [Google Scholar] [CrossRef]
- Seco, A.; del Castillo, J.M.; Espuelas, S.; Marcelino, S.; García, B. Sulphate Soil Stabilisation with Magnesium Binders for Road Subgrade Construction. Int. J. Pavement Eng. 2020, 23, 1840–1850. [Google Scholar] [CrossRef]
- Seco, A.; Miqueleiz, L.; Prieto, E.; Marcelino, S.; García, B.; Urmeneta, P. Sulfate Soils Stabilization with Magnesium-Based Binders. Appl. Clay Sci. 2017, 135, 457–464. [Google Scholar] [CrossRef]
- Al-Mukhtar, M.; Lasledj, A.; Alcover, J.F. Lime Consumption of Different Clayey Soils. Appl. Clay Sci. 2014, 95, 133–145. [Google Scholar] [CrossRef]
- Adeleke, B.; Kinuthia, J.; Oti, J. Strength and Swell Performance of High-Sulphate Kaolinite Clay Soil. Sustainability 2020, 12, 10164. [Google Scholar] [CrossRef]
- Oti, J.E.; Kinuthia, J.M.; Bai, J. Unfired Clay Masonry Bricks Incorporating Slate Waste. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2010, 163, 17–27. [Google Scholar] [CrossRef]
- Oti, J.E.; Kinuthia, J.M.; Bai, J. Developing Unfired Stabilised Building Materials in the UK. Proc. Inst. Civ. Eng. Eng. Sustain. 2008, 161, 211–218. [Google Scholar] [CrossRef]
- Wild, S.; Kinuthia, J.M.; Jones, G.I.; Higgins, D.D. Suppression of Swelling Associated with Ettringite Formation in Lime Stabilized Sulphate Bearing Clay Soils by Partial Substitution of Lime with Ground Granulated Blastfurnace Slag. Eng. Geol. 1999, 51, 257–277. [Google Scholar] [CrossRef]
- Celik, E.; Nalbantoglu, Z. Effects of Ground Granulated Blastfurnace Slag (GGBS) on the Swelling Properties of Lime-Stabilized Sulfate-Bearing Soils. Eng. Geol. 2013, 163, 20–25. [Google Scholar] [CrossRef]
- Aldaood, A.; Bouasker, M.; Al-Mukhtar, M. Mechanical Behavior of Gypseous Soil Treated with Lime. Geotech. Geol. Eng. 2021, 39, 719–733. [Google Scholar] [CrossRef]
- Jha, A.K.; Sivapullaiah, P.V. Volume Change Behavior of Lime Treated Gypseous Soil—Influence of Mineralogy and Microstructure. Appl. Clay Sci. 2016, 119, 202–212. [Google Scholar] [CrossRef]
- Ebailila, M.; Kinuthia, J.; Oti, J. Suppression of Sulfate-Induced Expansion with Lime–Silica Fume Blends. Materials 2022, 15, 2821. [Google Scholar] [CrossRef] [PubMed]
- Al-Mukhtar, M.; Khattab, S.; Alcover, J.F. Microstructure and Geotechnical Properties of Lime-Treated Expansive Clayey Soil. Eng. Geol. 2012, 139–140, 17–27. [Google Scholar] [CrossRef]
- Al-Mukhtar, M.; Lasledj, A.; Alcover, J.F. Behaviour and Mineralogy Changes in Lime-Treated Expansive Soil at 20 °C. Appl. Clay Sci. 2010, 50, 191–198. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, M.; Zhang, G.; Nowak, P.; Coen, A.; Tao, M. Calcium-Free Geopolymer as a Stabilizer for Sulfate-Rich Soils. Appl. Clay Sci. 2015, 108, 199–207. [Google Scholar] [CrossRef]
- Kinuthia, J.; Wild, S. Effects of Some Metal Sulfates on the Strength and Swelling Properties of Lime-Stabilised Kaolinite. Int. J. Pavement Eng. 2001, 2, 103–120. [Google Scholar] [CrossRef]
- Wild, S.; Kinuthia, J.M.; Robinson, R.B.; Humphreys, I. Effects of Ground Granulated Blast Furnace Slag (GGBS) on the Strength and Swelling Properties of Lime-Stabilized Kaolinite in the Presence of Sulphates. Clay Miner. 1996, 31, 423–433. [Google Scholar] [CrossRef]
- Wild, S.; Kinuthia, J.M.; Jones, G.I.; Higgins, D.D. Effects of Partial Substitution of Lime with Ground Granulated Blast Furnace Slag (GGBS) on the Strength Properties of Lime-Stabilised Sulphate-Bearing Clay Soils. Eng. Geol. 1998, 51, 37–53. [Google Scholar] [CrossRef]
- Oti, J.E.; Kinuthia, J.M.; Bai, J. Using Slag for Unfired-Clay Masonry-Bricks. Proc. Inst. Civ. Eng. Constr. Mater. 2008, 161, 147–155. [Google Scholar] [CrossRef]
- Bell, F.G. Lime Stabilization of Clay Minerals and Soils. Eng. Geol. 1996, 42, 223–237. [Google Scholar] [CrossRef]
- Dash, S.K. Lime Stabilization of Soils: Reappraisal. J. Mater. Civ. Eng. 2012, 24, 707–714. [Google Scholar] [CrossRef]
- Chemeda, Y.C.; Deneele, D.; Ouvrard, G. Short-Term Lime Solution-Kaolinite Interfacial Chemistry and Its Effect on Long-Term Pozzolanic Activity. Appl. Clay Sci. 2018, 161, 419–426. [Google Scholar] [CrossRef]
- Konan, K.L.; Peyratout, C.; Smith, A.; Bonnet, J.P.; Rossignol, S.; Oyetola, S. Comparison of Surface Properties between Kaolin and Metakaolin in Concentrated Lime Solutions. J. Colloid Interface Sci. 2009, 339, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Choobbasti, A.J.; Kutanaei, S.S. Microstructure Characteristics of Cement-Stabilized Sandy Soil Using Nanosilica. J. Rock Mech. Geotech. Eng. 2017, 9, 981–988. [Google Scholar] [CrossRef]
- BS EN 13286-2; Unbound and Hydraulically Bound Mixtures—Part 2: Test Methods for Laboratory Reference Density and Water Content-Proctor Compaction. BSI Standards Limited: London, UK, 2012; ISBN 132862:2010.
- Obuzor, G.N.; Kinuthia, J.M.; Robinson, R.B. Utilisation of Lime Activated GGBS to Reduce the Deleterious Effect of Flooding on Stabilised Road Structural Materials: A Laboratory Simulation. Eng. Geol. 2011, 122, 334–338. [Google Scholar] [CrossRef]
- Obuzor, G.N.; Kinuthia, J.M.; Robinson, R.B. Enhancing the Durability of Flooded Low-Capacity Soils by Utilizing Lime-Activated Ground Granulated Blastfurnace Slag (GGBS). Eng. Geol. 2011, 123, 179–186. [Google Scholar] [CrossRef]
- Obuzor, G.N.; Kinuthia, J.M.; Robinson, R.B. Soil Stabilisation with Lime-Activated-GGBS-A Mitigation to Flooding Effects on Road Structural Layers/Embankments Constructed on Floodplains. Eng. Geol. 2012, 151, 112–119. [Google Scholar] [CrossRef]
- BS 1924-2; Hydraulically Bound and Stabilized Materials for Civil Engineering Purposes—Part 2: Sample Preparation and Testing of Materials during and after Treatment. BSI Standards Limited: London, UK, 2018; ISBN 9780580974199.
- BS EN ISO 17892-7; Geotechnical Investigation and Testing-Laboratory Testing of Soil—Part 7: Unconfined Compression Test. BSI Standards Limited: London, UK, 2018; ISBN 178927:2017.
- BS EN 13286-49; Unbound and Hydraulically Bound Mixtures—Part 49: Accelerated Swelling Test for Soil Treated by Lime and/or Hydraulic Binder. BSI Standards Limited: London, UK, 2004; ISBN 0580435644.
- Oti, J.E.; Kinuthia, J.M. The Development of Stabilised Clay-Hemp Building Material for Sustainability and Low Carbon Use. J. Civ. Eng. Constr. 2020, 9, 205–214. [Google Scholar] [CrossRef]
- Okeke, C.; Abbey, S.; Oti, J.; Eyo, E.; Johnson, A.; Ngambi, S.; Abam, T.; Ujile, M. Appropriate Use of Lime in the Study of the Physicochemical Behaviour of Stabilised Lateritic Soil under Continuous Water Ingress. Sustainability 2021, 13, 257. [Google Scholar] [CrossRef]
- Behnood, A. Soil and Clay Stabilization with Calcium- and Non-Calcium-Based Additives: A State-of-the-Art Review of Challenges, Approaches and Techniques. Transp. Geotech. 2018, 17, 14–32. [Google Scholar] [CrossRef]
- Nidzam, R.M.; Kinuthia, J.M. Sustainable Soil Stabilisation with Blastfurnace Slag—A Review. Proc. Inst. Civ. Eng. Constr. Mater. 2010, 163, 157–165. [Google Scholar] [CrossRef]
- Yong, R.N.; Ouhadi, V.R. Experimental Study on Instability of Bases on Natural and Lime/Cement-Stabilized Clayey Soils. Appl. Clay Sci. 2007, 35, 238–249. [Google Scholar] [CrossRef]
- Adeleke, B.O.; Kinuthia, J.M.; Oti, J.E. Impacts of MgO Waste: GGBS Formulations on the Performance of a Stabilised Natural High Sulphate Bearing Soil. Constr. Build. Mater. 2022, 315, 125745. [Google Scholar] [CrossRef]
- Al-Mukhtar, M.; Lasledj, A.; Alcover, J.F. Behaviour and Mineralogy Changes in Lime-Treated Expansive Soil at 50 °C. Appl. Clay Sci. 2010, 50, 199–203. [Google Scholar] [CrossRef]
- Beetham, P.; Dijkstra, T.; Dixon, N.; Fleming, P.; Hutchison, R.; Bateman, J. Lime Stabilisation for Earthworks: A UK Perspective. Proc. Inst. Civ. Eng. Ground Improv. 2015, 168, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Oti, J.E.; Kinuthia, J.M.; Bai, J. Engineering Properties of Unfired Clay Masonry Bricks. Eng. Geol. 2009, 107, 130–139. [Google Scholar] [CrossRef]
- Abbey, S.J.; Eyo, E.U.; Oti, J.; Amakye, S.Y.; Ngambi, S. Mechanical Properties and Microstructure of Fibre-Reinforced Clay Blended with by-Product Cementitious Materials. Geosciences 2020, 10, 241. [Google Scholar] [CrossRef]
- Eyo, E.U.; Abbey, S.J.; Ngambi, S.; Ganjian, E.; Coakley, E. Incorporation of a Nanotechnology-Based Product in Cementitious Binders for Sustainable Mitigation of Sulphate-Induced Heaving of Stabilised Soils. Eng. Sci. Technol. Int. J. 2021, 24, 436–448. [Google Scholar] [CrossRef]
- Puppala, A.J.; Talluri, N.; Chittoori, B.C.S. Calcium-Based Stabiliser Treatment of Sulfate-Bearing Soils. Proc. Inst. Civ. Eng. Ground Improv. 2014, 167, 162–172. [Google Scholar] [CrossRef]
Oxide Compositions (%) | Kaolin | Lime | |
---|---|---|---|
Calcium oxide | <0.01 | 71.56 | |
Magnesium oxide | 0.21 | 0.58 | |
Silicon dioxide | 47.32 | 0.67 | |
Aluminium oxide | 35.96 | 0.07 | |
Sodium oxide | 0.07 | <0.02 | |
Phosphorus pentoxide | 0.12 | 0.03 | |
Iron or ferric oxide | 0.69 | 0.05 | |
Manganese oxide | 0.02 | 0.02 | |
Potassium oxide | 1.8 | <0.01 | |
Titanium dioxide | 0.02 | <0.01 | |
Vanadium oxide | <0.01 | 0.02 | |
Barium oxide | 0.07 | <0.01 | |
Acid soluble sulfate | 0.01 | 0.19 | |
Loss on Ignition | 13.1 | 27.4 |
Mix Code | Mix Compositions (wt%) | MDD 1 | MC 2 | Mix Ingredients (g) per Specimen | |||||
---|---|---|---|---|---|---|---|---|---|
Target Soil Material | Lime | Kaolin | Gypsum | Lime | Water | ||||
Kaolin | Gypsum | ||||||||
K–0G–4L | 100 | 0 | 4 | 30 | 1455 | 288.40 | 0.00 | 11.54 | 89.98 |
K–3G–4L | 97 | 3 | 4 | 30 | 1455 | 279.75 | 8.65 | 11.54 | 89.98 |
K–6G–4L | 94 | 6 | 4 | 30 | 1455 | 271.10 | 17.30 | 11.54 | 89.98 |
K–9G–4L | 91 | 9 | 4 | 30 | 1455 | 263.20 | 25.20 | 11.54 | 89.98 |
K–0G–6L | 100 | 0 | 6 | 30 | 1440 | 280.10 | 0.00 | 16.81 | 89.07 |
K–3G–6L | 97 | 3 | 6 | 30 | 1440 | 271.70 | 8.40 | 16.81 | 89.07 |
K–6G–6L | 94 | 6 | 6 | 30 | 1440 | 263.30 | 16.80 | 16.81 | 89.07 |
K–9G–6L | 91 | 9 | 6 | 30 | 1440 | 254.90 | 25.20 | 16.81 | 89.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebailila, M.; Kinuthia, J.; Oti, J. Role of Gypsum Content on the Long-Term Performance of Lime-Stabilised Soil. Materials 2022, 15, 5099. https://doi.org/10.3390/ma15155099
Ebailila M, Kinuthia J, Oti J. Role of Gypsum Content on the Long-Term Performance of Lime-Stabilised Soil. Materials. 2022; 15(15):5099. https://doi.org/10.3390/ma15155099
Chicago/Turabian StyleEbailila, Mansour, John Kinuthia, and Jonathan Oti. 2022. "Role of Gypsum Content on the Long-Term Performance of Lime-Stabilised Soil" Materials 15, no. 15: 5099. https://doi.org/10.3390/ma15155099
APA StyleEbailila, M., Kinuthia, J., & Oti, J. (2022). Role of Gypsum Content on the Long-Term Performance of Lime-Stabilised Soil. Materials, 15(15), 5099. https://doi.org/10.3390/ma15155099