Stress Distribution Pattern in Zygomatic Implants Supporting Different Superstructure Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernandes, P.R.E.; Otero, A.I.P.; Fernandes, J.C.H.; Nassani, L.M.; Castilho, R.M.; De Oliveira Fernandes, G.V. Clinical Performance Comparing Titanium and Titanium-Zirconium or Zirconia Dental Implants: A Systematic Review of Randomized Controlled Trials. Dent. J. 2022, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Tobar-Reyes, J.; Andueza-Castro, L.; Jiménez-Silva, A.; Bustamante-Plaza, R.; Carvajal-Herrera, J. Micromotion Analysis of Immediately Loaded Implants with Titanium and Cobalt-Chrome Superstructures. 3D Finite Element Analysis. Clin. Exp. Dent. Res. 2021, 7, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S.; Fareed, M.A.; Riaz, S.; Latif, M.; Habib, S.R.; Khurshid, Z. Customized Therapeutic Surface Coatings for Dental Implants. Coatings 2020, 10, 568. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, R.; Cooper, P.R.; Khurshid, Z.; Shavandi, A.; Ratnayake, J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021, 26, 3007. [Google Scholar] [CrossRef]
- Akay, C.; Yaluğ, S. Biomechanical 3-Dimensional Finite Element Analysis of Obturator Protheses Retained with Zygomatic and Dental Implants in Maxillary Defects. Med. Sci. Monit. 2015, 21, 604–611. [Google Scholar] [CrossRef][Green Version]
- Gracher, A.H.P.; de Moura, M.B.; da Silva Peres, P.; Thomé, G.; Padovan, L.E.M.; Trojan, L.C. Full Arch Rehabilitation in Patients with Atrophic Upper Jaws with Zygomatic Implants: A Systematic Review. Int. J. Implant Dent. 2021, 7, 17. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Dal Piva, A.M.D.O.; Lo Giudice, R.; Borges, A.L.S.; Bottino, M.A.; Epifania, E.; Ausiello, P. The Influence of Custom-Milled Framework Design for an Implant-Supported Full-Arch Fixed Dental Prosthesis: 3D-FEA Sudy. Int. J. Environ. Res. Public Health 2020, 17, 4040. [Google Scholar] [CrossRef]
- Mubaraki, M.Q.; Moaleem, M.M.A.; Alzahrani, A.H.; Shariff, M.; Alqahtani, S.M.; Porwal, A.; Al-Sanabani, F.A.; Bhandi, S.; Tribst, J.P.M.; Heboyan, A.; et al. Assessment of Conventionally and Digitally Fabricated Complete Dentures: A Comprehensive Review. Materials 2022, 15, 3868. [Google Scholar] [CrossRef]
- De Carvalho Formiga, M.; Grzech-Leśniak, K.; Moraschini, V.; Shibli, J.A.; Neiva, R. Effects of Osseodensification on Immediate Implant Placement: Retrospective Analysis of 211 Implants. Materials 2022, 15, 3539. [Google Scholar] [CrossRef]
- Moraes, N.; Moraes, E.; Anastacio, T.; Silva, L.; Machado, A.; Schoichet, J.; Alto, R.M.; Mello-Machado, R.; Cardarelli, A.; de Almeida Barros Mourão, C.F.; et al. Active Tactile Sensibility of Brånemark Protocol Prostheses: A Case-Control Clinical Study. Materials 2021, 14, 4644. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Campanelli de Morais, D.; Melo de Matos, J.D.; Lopes, G.D.R.S.; Dal Piva, A.M.D.O.; Souto Borges, A.L.; Bottino, M.A.; Lanzotti, A.; Martorelli, M.; Ausiello, P. Influence of Framework Material and Posterior Implant Angulation in Full-Arch All-on-4 Implant-Supported Prosthesis Stress Concentration. Dent. J. 2022, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-L.; Tsai, H.-L.; Wu, Y.-L.; Hsu, J.-T.; Wu, A.Y.-J. Biomechanical Evaluation of Bone Atrophy and Implant Length in Four Implants Supporting Mandibular Full-Arch-Fixed Dentures. Materials 2022, 15, 3295. [Google Scholar] [CrossRef] [PubMed]
- Arinc, H. Effects of Prosthetic Material and Framework Design on Stress Distribution in Dental Implants and Peripheral Bone: A Three-Dimensional Finite Element Analysis. Med. Sci. Monit. 2018, 24, 4279–4287. [Google Scholar] [CrossRef] [PubMed]
- Villefort, R.F.; Diamantino, P.J.S.; Von Zeidler, S.L.V.; Borges, A.L.S.; Silva-Concílio, L.R.; Saavedra, G.D.F.A.; Tribst, J.P.M. Mechanical Response of PEKK and PEEK as Frameworks for Implant-Supported Full-Arch Fixed Dental Prosthesis: 3D Finite Element Analysis. Eur. J. Dent. 2022, 16, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Arab, A.; Xie, J.; Chen, P. The Influence of Microstructure on the Flexural Properties of 3D Printed Zirconia Part via Digital Light Processing Technology. Materials 2022, 15, 1602. [Google Scholar] [CrossRef] [PubMed]
- Alshiddi, I.F.; Habib, S.R.; Zafar, M.S.; Bajunaid, S.; Labban, N.; Alsarhan, M. Fracture Load of CAD/CAM Fabricated Cantilever Implant-Supported Zirconia Framework: An In Vitro Study. Molecules 2021, 26, 2259. [Google Scholar] [CrossRef] [PubMed]
- Alqurashi, H.; Khurshid, Z.; Syed, A.U.Y.; Habib, S.R.; Rokaya, D.; Zafar, M.S. Polyetherketoneketone (PEKK): An emerging biomaterial for oral implants and dental prostheses. J. Adv. Res. 2021, 28, 87–95. [Google Scholar] [CrossRef]
- Delucchi, F.; De Giovanni, E.; Pesce, P.; Bagnasco, F.; Pera, F.; Baldi, D.; Menini, M. Framework Materials for Full-Arch Implant-Supported Rehabilitations: A Systematic Review of Clinical Studies. Materials 2021, 14, 3251. [Google Scholar] [CrossRef]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- Shivakumar, S.; Kudagi, V.S.; Talwade, P. Applications of Finite Element Analysis in Dentistry: A Review. J. Int. Oral Health 2021, 13, 415. [Google Scholar]
- Castorina, G. Carbon-Fiber Framework for Full-Arch Implant-Supported Fixed Dental Prostheses Supporting Resin-Based Composite and Lithium Disilicate Ceramic Crowns: Case Report and Description of Features. Int. J. Periodontics Restor. Dent. 2019, 39, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Peñarrocha-Diago, M.; Bernabeu-Mira, J.C.; Fernández-Ruíz, A.; Aparicio, C.; Peñarrocha-Oltra, D. Bone Regeneration and Soft Tissue Enhancement around Zygomatic Implants: Retrospective Case Series. Materials 2020, 13, 1577. [Google Scholar] [CrossRef][Green Version]
- Tribst, J.P.M.; Dal Piva, A.M.D.O.; Ausiello, P.; De Benedictis, A.; Bottino, M.A.; Borges, A.L.S. Biomechanical Analysis of a Custom-Made Mouthguard Reinforced with Different Elastic Modulus Laminates during a Simulated Maxillofacial Trauma. Craniomaxillofac. Trauma Reconstr. 2021, 14, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Kemmoku, D.T.; Noritomi, P.Y.; Roland, F.G.; Da Silva, J.V.L. Use of BioCAD in the Development of a Growth Compliant Prosthetic Device for Cranioplasty of Growing Patients. In Innovative Developments in Design and Manufacturing; CRC Press: Boca Raton, FL, USA, 2009; pp. 145–148. ISBN 9780429206498. [Google Scholar]
- Vadapalli, S.; Sairyo, K.; Goel, V.K.; Robon, M.; Biyani, A.; Khandha, A.; Ebraheim, N.A. Biomechanical Ra-tionale for Using Polyetheretherketone (PEEK) Spacers for Lumbar Interbody Fusion—A Finite Element Study. Spine 2006, 31, E992–E998. [Google Scholar] [CrossRef] [PubMed]
- Elias, C.N.; Lima, J.H.C.; Valiev, R.; Meyers, M.A. Biomedical Applications of Titanium and Its Alloys. JOM 2008, 60, 46–49. [Google Scholar] [CrossRef]
- Bojko, Ł.; Ryniewicz, A.M.; Ryniewicz, W. Strength Tests of Alloys for Fixed Structures in Dental Prosthetics. Materials 2022, 15, 3497. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.; Sandino, C.; Cerrolaza, M.; Pérez, R.; Herrero-Climent, M.; Rios-Carrasco, B.; Rios-Santos, J.V.; Brizuela, A. Influence of Bone-Level Dental Implants Placement and of Cortical Thickness on Osseointegration: In Silico and in Vivo Analyses. J. Clin. Med. 2022, 11, 1027. [Google Scholar] [CrossRef] [PubMed]
- Fazel, A.; Aalai, S.; Rismanchian, M. Effect of Macro-Design of Immediately Loaded Implants on Micromotion and Stress Distribution in Surrounding Bone Using Finite Element Analysis. Implant Dent. 2009, 18, 345–352. [Google Scholar] [CrossRef]
- Zupancic Cepic, L.; Frank, M.; Reisinger, A.; Pahr, D.; Zechner, W.; Schedle, A. Biomechanical Finite Element Analysis of Short-Implant-Supported, 3-Unit, Fixed CAD/CAM Prostheses in the Posterior Mandible. Int. J. Implant Dent. 2022, 8, 8. [Google Scholar] [CrossRef]
- Mourya, A.; Nahar, R.; Mishra, S.K.; Chowdhary, R. Stress Distribution around Different Abutments on Titanium and CFR-PEEK Implant with Different Prosthetic Crowns under Parafunctional Loading: A 3D FEA Study. J. Oral Biol. Craniofac. Res. 2021, 11, 313–320. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Dal Piva, A.M.O.; Bottino, M.A.; Nishioka, R.S.; Borges, A.L.S.; Özcan, M. Digital Image Correlation and Finite Element Analysis of Bone Strain Generated by Implant-Retained Cantilever Fixed Prosthesis. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Strasding, M.; Valente, N.A.; Zwahlen, M.; Liu, S.; Pjetursson, B.E. A Systematic Review of the Survival and Complication Rates of Zirconia-Ceramic and Metal-Ceramic Multiple-Unit Fixed Dental Prostheses. Clin. Oral Implants Res. 2018, 29, 184–198. [Google Scholar] [CrossRef][Green Version]
- Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Survival and Complications of Zygomatic Implants: An Updated Systematic Review. J. Oral Maxillofac. Surg. 2016, 74, 1949–1964. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Almeida, P.H.T.; Cacciacane, S.H.; França, F.M.G. Stresses Generated by Two Zygomatic Implant Placement Techniques Associated with Conventional Inclined Anterior Implants. Ann. Med. Surg. 2018, 30, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Kalman, L.; Desimone, L. A Novel Workflow for Indirect Cobalt-Chromium Restorations Using Additive Manufacturing without Digital Design. J. Dent. Res. Dent. Clin. Dent. Prospect. 2021, 15, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Sorní, M.; Guarinós, J.; García, O.; Peñarrocha, M. Implant Rehabilitation of the Atrophic Upper Jaw: A Review of the Literature since 1999. Med. Oral Patol. Oral Cir. Bucal 2005, 10, E45–E56. [Google Scholar]
- Ali, S.A.; Karthigeyan, S.; Deivanai, M.; Kumar, A. Implant Rehabilitation for Atrophic Maxilla: A Review. J. Indian Prosthodont. Soc. 2014, 14, 196–207. [Google Scholar] [CrossRef]
- Lozada, J.; Proussaefs, P. Clinical Radiographic, and Histologic Evaluation of Maxillary Bone Reconstruction by Using a Titanium Mesh and Autogenous Iliac Graft: A Case Report. J. Oral Implantol. 2002, 28, 9–14. [Google Scholar] [CrossRef]
- Lo Giudice, R.; Rizzo, G.; Centofanti, A.; Favaloro, A.; Rizzo, D.; Cervino, G.; Squeri, R.; Costa, B.G.; La Fauci, V.; Lo Giudice, G. Steam Sterilization of Equine Bone Block: Morphological and Collagen Analysis. BioMed Res. Int. 2018, 2018, 9853765. [Google Scholar] [CrossRef][Green Version]
- Pistilli, R.; Felice, P.; Piatelli, M.; Nisii, A.; Barausse, C.; Esposito, M. Blocks of Autogenous Bone versus Xenografts for the Rehabilitation of Atrophic Jaws with Dental Implants: Preliminary Data from a Pilot Randomised Controlled Trial. Eur. J. Oral Implantol. 2014, 7, 153–171. [Google Scholar]
- Lo Giudice, G.; Iannello, G.; Terranova, A.; Lo Giudice, R.; Pantaleo, G.; Cicciù, M. Transcrestal Sinus Lift Procedure Approaching Atrophic Maxillary Ridge: A 60-Month Clinical and Radiological Follow-Up Evaluation. Int. J. Dent. 2015, 2015, 261652. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Esposito, M.; Davó, R.; Marti-Pages, C.; Ferrer-Fuertes, A.; Barausse, C.; Pistilli, R.; Ippolito, D.R.; Felice, P. Immediately Loaded Zygomatic Implants vs Conventional Dental Implants in Augmented Atrophic Maxillae: 4 Months Post-Loading Results from a Multicentre Randomised Controlled Trial. Eur. J. Oral Implantol. 2018, 11, 11–28. [Google Scholar] [PubMed]
- Cicciù, M.; Bramanti, E.; Cecchetti, F.; Scappaticci, L.; Guglielmino, E.; Risitano, G. FEM and Von Mises Analyses of Different Dental Implant Shapes for Masticatory Loading Distribution. Oral Implantol. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Aparicio, C.; Olivo, A.; de Paz, V.; Kraus, D.; Luque, M.M.; Crooke, E.; Simon, P.; Simon, M.; Ferreira, J.; Serrano, A.S.; et al. The Zygoma Anatomy-Guided Approach (ZAGA) for Rehabilitation of the Atrophic Maxilla. Clin. Dent. Rev. 2022, 6, 2. [Google Scholar] [CrossRef]
- De Moraes, P.H.; De Arruda Nóbilo, M.; De Moraes, M.; Olate, S.; De Albergaria Barbosa, J.R. Photoelastic Analysis of Two Maxillary Protocols Using Zygomatic Implants. Int. J. Odontostomatol. 2015, 9, 107–111. [Google Scholar] [CrossRef][Green Version]
- Wen, H.; Guo, W.; Liang, R.; Xiang, L.; Long, G.; Wang, T.; Deng, M.; Tian, W. Finite Element Analysis of Three Zygomatic Implant Techniques for the Severely Atrophic Edentulous Maxilla. J. Prosthet. Dent. 2014, 111, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Salvoni, A.D.; Salvoni, T.F.; Kamezawa, L.S.G.; Amorim, J.B.D.O.; Pagani, C. Botulinum Toxin for Modulating the Muscle Strength of Patients Rehabilitated with Zygomatic Implants. Braz. Dent. Sci. 2019, 22, 220–227. [Google Scholar] [CrossRef][Green Version]
- Mirchandani, B.; Zhou, T.; Heboyan, A.; Yodmongkol, S.; Buranawat, B. Biomechanical Aspects of Various Attachments for Implant Overdentures: A Review. Polymers 2021, 13, 3248. [Google Scholar] [CrossRef]
- Demachkia, A.M.; Sichi, L.G.B.; Rodrigues, J.V.M.; Junior, L.N.; de Araújo, R.M.; de Carvalho Ramos, N.; Bottino, M.A.; Tribst, J.P.M. Implant-Supported Restoration with Straight and Angled Hybrid Abutments: Digital Image Correlation and 3D-Finite Element Analysis. European J. Gen. Dent. 2022, 11, 23–31. [Google Scholar] [CrossRef]
- Ahmed, M.A.M.; Hamdy, A.M.; Fattah, G.A.; Effadl, A.K.A. Prosthetic Design and Restorative Material Effect on the Biomechanical Behavior of Dental Implants: Strain Gauge Analysis. Braz. Dent. Sci. 2022, 25, e3380. [Google Scholar] [CrossRef]
Structure | Elastic Modulus (GPa) | Poisson Ratio |
---|---|---|
PEEK | 3.7 | 0.4 |
Titanium | 110 | 0.3 |
CoCr | 201 | 0.3 |
Zirconia | 205 | 0.3 |
Carbon-reinforced polymer | 42.7 | 0.3 |
Bone tissue | 5600 | 0.28 |
Material | Superstructure | Zygomatic Implant | Zygomatic Prosthetic Screw | Anterior Implant | Anterior Prosthetic Connection |
---|---|---|---|---|---|
PEEK | 17.96 | 102.1 | 126.8 | 9.9 | 6.5 |
Titanium | 27.07 | 55.24 | 64.5 | 13.7 | 8.8 |
CoCr | 33.19 | 47.60 | 55.95 | 15.8 | 9.9 |
Zirconia | 34.53 | 46.88 | 56.12 | 15.9 | 9.9 |
Carbon-reinforced polymer | 25.12 | 72.95 | 80.65 | 10.8 | 8.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heboyan, A.; Lo Giudice, R.; Kalman, L.; Zafar, M.S.; Tribst, J.P.M. Stress Distribution Pattern in Zygomatic Implants Supporting Different Superstructure Materials. Materials 2022, 15, 4953. https://doi.org/10.3390/ma15144953
Heboyan A, Lo Giudice R, Kalman L, Zafar MS, Tribst JPM. Stress Distribution Pattern in Zygomatic Implants Supporting Different Superstructure Materials. Materials. 2022; 15(14):4953. https://doi.org/10.3390/ma15144953
Chicago/Turabian StyleHeboyan, Artak, Roberto Lo Giudice, Les Kalman, Muhammad Sohail Zafar, and João Paulo Mendes Tribst. 2022. "Stress Distribution Pattern in Zygomatic Implants Supporting Different Superstructure Materials" Materials 15, no. 14: 4953. https://doi.org/10.3390/ma15144953