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Abstract: The aim of this study was to assess and compare the stress–strain pattern of zygomatic
dental implants supporting different superstructures using 3D finite element analysis (FEA). A
model of a tridimensional edentulous maxilla with four dental implants was designed using the
computer-aided design (CAD) software. Two standard and two zygomatic implants were positioned
to support the U-shaped bar superstructure. In the computer-aided engineering (CAE) software,
different materials have been simulated for the superstructure: cobalt–chrome (CoCr) alloy, titanium
alloy (Ti), zirconia (Zr), carbon-fiber polymers (CF) and polyetheretherketone (PEEK). An axial
load of 500 N was applied in the posterior regions near the zygomatic implants. Considering the
mechanical response of the bone tissue, all superstructure materials resulted in homogeneous strain
and thus could reconstruct the edentulous maxilla. However, with the aim to reduce the stress in the
zygomatic implants and prosthetic screws, stiffer materials, such Zr, CoCr and Ti, appeared to be a
preferable option.

Keywords: dental implants; finite element analysis; dental materials; materials; prosthodontics

1. Introduction

Dental implants remain the ideal treatment option for supporting prosthetic restora-
tions in patients with partial and/or complete edentulism [1]. Unfortunately, in the atrophic
edentulous maxilla, poor bone quantity and quality may inhibit the use of conventional
dental implants [2]. In certain situations, bone augmentation with biomaterials may be
required to improve the bone volume, enabling the clinician to perform more conventional
rehabilitation treatment options with standard dental implants [3,4]. However, in the
case of severe maxillary atrophy, the use of zygomatic implants may be the only viable
alternative available for full-arch rehabilitation, which may also reduce the requirement for
bone graft procedures [2,5,6].

Traditional protocols recommended a healing phase, to allow for the proper osseoin-
tegration between the bone and implant [2,3]. During healing, the application of occlusal
forces should be minimized [7]. Previous studies have indicated that dental implants could
be immediately loaded without impacting the osseointegration phase [8–10]. This seems
to be generally accepted as a clinical protocol for implant-supported, full-arch prostheses,
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in order to reduce the treatment time [6]. Conversely, implant-supported full-arch pros-
thesis designs require the splinting of a solid superstructure, that allows the transfer and
appropriate distribution of the occlusal loads between the implants and supporting bone,
limiting the amount of micromovements [2,7,11,12]. In terms of biomechanical behavior
of the superstructure, various factors may affect the flexural strength and performance,
including the thickness, cross-sectional design and structural materials [12–14].

With the application of CAD/CAM, there are several superstructure materials that are
suggested for implant-supported, full-arch rehabilitations, such as a cobalt–chrome alloy [2],
a titanium alloy [7], zirconia [15,16], carbon-fiber polymers [17,18] and the polyarylether-
ketone family [14,19]. Despite the extensive literature on the effects of superstructure
materials for conventional implants [6,11–21], the data regarding biomechanical behavior
of zygomatic implants are limited [2,6,21,22].

Both biological tissues and the stress/strain patterns of synthetic structures can be
assessed using 3D finite element method (3D-FEM) [20]. Anatomically complex structures
can be geometrically designed and correlated with the mechanical properties through
finite element analysis. The calculated stress can also be evaluated to compare simulated
models and to assist in determining if the planned oral rehabilitation could potentially fail
mechanically under loading conditions.

The purpose of this current investigation was to determine the superstructure elastic
modulus associated with zygomatic implants on the stress and strain under loading. The
null hypothesis was that superstructure stiffness from different materials does not affect
the mechanical behavior of zygomatic implants in maxillary rehabilitation.

2. Materials and Methods

A computer-generated model of a skull without the presence of anomalies was trans-
ferred in DICOM format from the database [23]. The 3D slicer software was used to convert
the file to STL (Stereolithography). Using CAD software (Rhinoceros Version 4.0 SR8,
McNeel North America, Seattle, WA, USA), a simulated model of an edentulous maxilla
was designed, incorporating the major anatomical features of an adult human, including
shape, size, and absence of abnormalities [23] (Figure 1).
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Figure 1. Polylines network in the CAD software created for three-dimensional modelling of a skull
with fixation of the four implants. Anterior implants with conventional design and posterior implants
as zygomatic implants.

The modeling step was performed following BioCad protocol to create the 3D volume
model with solid characteristics [24]. For this simulation, the anatomical structure of the
bone was designed with polylines, and the intersection of three/four polylines was joined



Materials 2022, 15, 4953 3 of 12

to create the individual network surface. The union of intersected and joined regions was
used to create the final 3D shape of the model. Sequentially, Morse-taper dental implants
(10 × 4.1 mm) (Conexão Sistemas de Prótese, Arujá, Brazil) previously designed [14] were
exported into the CAD and placed in the anterior portion of the maxilla, symmetrically near
the canine regions [14]. The platform had a diameter of 4.1 mm. Mini-conical abutments,
as well as their corresponding screws, were designed for each implant. Subsequently,
zygomatic implants with a tilted head, monoblock conical form and with apical threads
(3.6× 33.5 mm) were designed and positioned bilaterally in the molar sites [2]. For the
zygomatic implants, abutments were not used. The superstructure was designed following
the contour of the maxilla (U) and the implant’s platform. This resulted in flat surfaces and
rounded corners of 4 mm width and 3 mm maximum thickness [14] (Figure 2).
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Figure 2. Three-dimensional simulated model developed for the present study. At higher mag-
nification, it is possible to observe the implants, abutments, prosthetic screws and position of
the superstructure.

The solid 3D geometries were then imported into the computer-aided engineering
software (ANSYS 19.2, ANSYS Inc., Houston, TX, United States) in STEP format. The
material’s constants (elastic modulus and Poisson ratio) were assigned to each volumetric
element with isotropic and homogeneous consistency, based on data in the literature. The
properties have been summarized in Table 1 [15,21,25–28]. Five different superstructures
have been simulated, as showed in Figure 3. The implants and abutments were simulated
with a titanium alloy (Table 1). The contacts were considered ideally bonded between the
structures. A 3D mesh was generated subdividing the geometry into a finite number of
elements. The elements considered were the tetrahedral type for all models. The total
number of elements (808664) and nodes (1365383) for the final setup were determined by a
convergence test (Figure 4).

Table 1. Mechanical properties simulated.

Structure Elastic Modulus (GPa) Poisson Ratio

PEEK 3.7 0.4

Titanium 110 0.3

CoCr 201 0.3

Zirconia 205 0.3

Carbon-reinforced polymer 42.7 0.3

Bone tissue 5600 0.28
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Figure 4. Meshing division created with tetrahedral elements during the pre-processing step.

For the boundary conditions, the top surface of the skull was limited in all directions
and the force was symmetrically applied at the posterior surface of the superstructure.
A load was applied in a circular region of 2 mm2 in the regions of the left and right first
molars of 500 N [14]. The force exerted of 500 N is equal to the maximum force recorded
by osteomatognatic units [29] as well as corresponding to a physiological average load for
human bite force [30–32]. However, parafunctional loading could present axial and oblique
loads simultaneously and with values higher than 1000 N [31].

The obtained data for the framework, abutments, implants, and screws were calculated
in von Mises stress distribution as well as in microstrains (µε/µε) for bone tissue [7].

3. Results

In the maxilla, the microstrain pattern distribution, relevant to each superstructure
biomaterial, was visible in colorimetric graphs in Figures 5 and 6. Figure 5 illustrates the
occlusal view, and depicts that the strain was higher in the posterior peri-implant region
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near the zygomatic implant platform. The stiffer models (zirconia and CoCr) displayed
favorable mechanical response for the peri-implant bone, with lower strain. The microstrain
criteria application, which is based on the biologic “machinery”, suggests that the entire
bone strength formulate a tissue-level according to a negative feedback system, called
the mechanostat. Therefore, regardless of the superstructure material, there are no values
within the physiological limits of bone (>3000 and <500 µε). In a lateral view (Figure 6),
it is illustrated that the strain is distributed along the implant axis, even in the regions
without threads.
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Figure 6. Lateral view of the microstrain distribution in the maxillary bone according to the different
superstructure materials. (A) PEEK, (B) CF, (C) Ti, (D) CoCr and (E) Zi. In this view, the red area
with high stress can be reduced as the superstructure stiffer increases.

Using the mechanical APDL auto-probe, it was possible to locate the highest stress
value per structure in the model. The stress peak for the superstructure itself was pro-
portional to the elastic modulus (Table 2). The higher the stress concentration in the
superstructure, the lower the stress peak on the zygomatic implants and associated pros-
thetic screws. Conversely, with the conventional anterior implants, higher stress occurred
with the simulated zirconia superstructure.

Table 2. Stress peak calculated in each structure.

Material Superstructure Zygomatic
Implant

Zygomatic
Prosthetic Screw Anterior Implant

Anterior
Prosthetic

Connection

PEEK 17.96 102.1 126.8 9.9 6.5

Titanium 27.07 55.24 64.5 13.7 8.8

CoCr 33.19 47.60 55.95 15.8 9.9

Zirconia 34.53 46.88 56.12 15.9 9.9

Carbon-reinforced
polymer 25.12 72.95 80.65 10.8 8.1

The high stress concentration with the stiffer superstructures resulted in a lower stress
distribution in the zygomatic implants, which mainly affected the most distal implants
(Figure 7). The anterior implants showed little variation in stress concentrations between
the models, when comparing the values in the posterior zygomatic implants.

When observing the section plane through the implant axis, it is possible to appreciate
that the stress mainly affects the cervical portion, with minimal stress at the apex of the
implant. This corresponds to the fulcrum around the bone level at the cervical region. For
the anterior implants, the most damaged area was around the abutment neck.

In a lateral view, Figure 8 illustrates the stress on the prosthetic screws. Evidently, the
most affected screws were located in the posterior region, near the loading. However, the
stress may be affected by the superstructure material.
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Figure 7. Sectioned frontal view (anterior implants axis) of the von-Mises stress distribution in the
implants according to the different superstructure materials: (A) PEEK, (B) CF, (C) Ti, (D) CoCr and
(E) Zi. For the anterior implant, the abutment–abutment joint is the most affected region, while the
zygomatic implant concentrates stress along its structure.
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Figure 8. Lateral view of the von-Mises stress distribution in the prosthetic screws according to the
different superstructure materials: (A) PEEK, (B) CF, (C) Ti, (D) CoCr and (E) Zi. Both posterior
and anterior prosthetic screws were involved in the load distribution, with a greater effect at the
posterior one. Regardless, when the elastic modulus of the superstructure material decreases, the
stress concentration on the screw increases.

4. Discussion

The present study used a CAD software to design a tridimensional model of an eden-
tulous maxilla and evaluated the stress–strain pattern of zygomatic dental implants with
different superstructures. The null hypothesis was that stiffness from different materi-
als does not affect the mechanical behavior of zygomatic implants in maxillary rehabil-
itation. This was rejected since there was a difference in the stress, as related to each
simulated condition.

Based on the present simulation, the higher strain in the posterior peri-implant tissue
near the zygomatic implant platform seems to be adequate, as the zygomatic implants
and corresponding bone are well suited. This supports the relatively high success rate
of zygomatic implants (12-year cumulative survival rate of 95.21%) and reinforces the
treatment option as a predictable approach, especially in patients with limited maxillary
bone density [33,34]. This simulation supports that properly placed implants provide the
most predictable outcome, in terms of stress–strain behavior, which is likely to influence
the success of treatment. The placement of zygomatic implants near the molar region seems
to be ideal and has been previously reported in the literature [35–37].

As the data illustrated, the higher the stress concentration in the superstructure, the
lower the stress on the zygomatic implant and its corresponding prosthetic screw. Therefore,
considering only the stress values, zirconia can be considered as a material of choice due to
its role in limiting the stress on implants and screws. However, a previous literature review
indicated that for implant-supported fixed dental prostheses, the conventionally bi-layered
zirconia structure should not be considered as the material of choice, due to its high risk
for fractures and chipping of the veneer material. Monolithic zirconia may be a promising
alternative, but more clinical data are required [38].

Future research may explore 3D printed and additively manufactured superstructure
materials, specifically a titanium alloy and zirconia, either in a solid form or in the newly
explored lattice structure [36]. The lattice structure may provide a mechanical behavior
that could be favorable for long-term success. Moreover, additive manufactured workflows
have been explored that provide drastic improvements in efficiency and cost [36]. The
fabrication pathway could also be delivered at the point of care, as a customized patient-
specific prosthesis, dramatically improving the workflow. Therefore, the processing method
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may affect the accessibility and sustainability of this treatment modality and further studies
are required to confirm this hypothesis.

In the maxilla, the pneumatization of the maxillary sinuses, centripetal alveolar re-
sorption pattern, nasal fossae and nasopalatal duct may lead to severe atrophy [37]. The
rehabilitation of the severe atrophic maxillary could include different techniques that have
shown different success and survival rates [38–44]. In the present simulation, the modelling
considered the zygoma anatomy-guided approach, considering a ZAGA type II with a
combined extra- and intra-sinus path with most of the implant body being located extra-
sinusally [45]. However, other conditions could modify the results presented and should
be evaluated further [45–49].

To clarify the impact of implant surgery, a previous study evaluated and compared
3 zygomatic implantation approaches for the restoration of the extensively atrophied
edentulous maxilla using a finite element method [47]. According to the authors, all
simulated zygomatic implant systems resulted in homogeneous load distribution and
thus could be used to rehabilitate the edentulous maxilla. However, the exteriorized
method, with one dental implant in the lateral incisor area, seemed to be the most suitable
reconstruction method for the severely resorbed edentulous maxilla [47]. That model is
very similar to the model simulated in this investigation.

Guided Bone Regeneration (GBR) with titanium meshes [39,40], bone grafts [40,41]
and sinus lifting surgeries [38–42] are associated with post-operative complications, long
rehabilitative times and high cost. Zygomatic implants [43], splinted with conventional
implants, may be considered an alternative to bone augmentation surgery in patients
with a severely atrophic maxilla that prefer a fixed prosthetic rehabilitation that can be
reliable, even with immediate loading. The present investigation supports this information,
suggesting that a stiffer framework should be used for an improved stress distribution.
The rehabilitation of patients with zygomatic implants, splinted with a superstructure,
may be manufactured from different materials leading to a different pattern for the stress
distribution. Since the 3D-FEM analysis is a reliable technique to evaluate the stress patterns
comparing different materials [44], it was the methodologic approach applied in this study.

A previous finite element study evaluated the extent of micromotion of implants under
immediate loading supported by titanium and CoCr superstructures [2]. The authors used
a 3D model of a half-edentulous maxilla with a zygomatic posterior implant. Similar to the
present study, they found that the greatest amount of micromotion occurred on the implant
where the load was applied. However, they also found that the extent of micromotion
was slightly higher in the implants with CoCr alloy superstructure. In the reported study,
some factors influenced their results. The first was the absence of threads in the dental
implants, which reduced the primary implant stability. Secondly, was the simulation of a
non-linear condition with coefficient of friction between the surface of the implant and the
neighboring bone [2].

Using numerical simulation, previous authors reported the effects of restorative mate-
rials and framework design on the stress within dental implants and peripheral bone [13].
According to the literature, the variations in the biomaterial and width of connectors may
influence stress on cortical bone, cancellous bone, and implants. They also reported that
cobalt-chromium-supported ceramic was related with the lowest stress values. These
findings corroborate the present investigation, with similar mechanical behavior for super-
structures supported by zygomatic implants.

According to an in vitro study, the mechanical response is an important issue in
zygomatic implants that was not deeply investigated [46]. To overcome this, the authors
investigated the mechanical strain in the supporting bone around zygomatic implants using
photoelastic analysis. However, there are limitations inherent to the photoelastic analysis
considering simplifications in bone complex and purely quantitative results [46]. Similarly,
the present study presents limitations. The simulation was performed with linear-elastic
behavior, there was no presence of different loading directions, parafunctional habits, oral
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biofilm, pH variation, fatigue effects, temperature variation, presence of vertical misfit
between the superstructure and abutments, as well as antagonist teeth.

Another major limitation of the present investigation was the absence of numerical
model validation using an in vitro experiment for the result’s reliability. Therefore, despite
corroborating with previous investigations in terms of stress pattern and mechanical
behavior, the results obtained should not be isolated or used to determine treatment
reliability. Further investigations, considering photoelasticity, strain gauge or digital image
correlation, could be performed to confirm or deny the differences observed in the present
stress analysis [50,51]. In summary, the stress maps should be carefully evaluated before
being extrapolated by further studies in dentistry.

5. Conclusions

Considering the mechanical response of bone tissue, all evaluated materials resulted in
homogeneous strain and thus may be used to reconstruct the edentulous maxilla. However,
with the aim to reduce the stress in the zygomatic implants and prosthetic screws, stiffer
materials such as zirconia, CoCr and titanium, demonstrated a preferable mechanical
behavior compared to the polymeric superstructures.
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