Selective Control of Eu3+ Radiative Emission by Hyperbolic Metamaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Hyperbolic Metamaterials
2.2. Coupling of Emitter-Doped Polymer Films to Hms
2.3. Integrated and Time-Resolved Photoluminescence Measurements
2.4. Simulation Methods
3. Results and Discussion
3.1. Structural and Optical Properties of the Hyperbolic Metamaterials
3.2. Photoluminescence of Emitters Coupled to the Hyperbolic Metamaterials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koenderink, A.F.; Alù, A.; Polman, A. Nanophotonics: Shrinking light-based technology. Science 2015, 348, 516–521. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Li, C.; Huang, Y.Z.; Zhang, Q. Plasmonic nanolasers in on-chip light sources: Prospects and challenges. ACS Nano 2020, 14, 14375–14390. [Google Scholar] [CrossRef] [PubMed]
- Soukoulis, C.M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 2011, 5, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Barnes, W.L. Fluorescence near interfaces: The role of photonic mode density. J. Mod. Opt. 1998, 45, 661–699. [Google Scholar] [CrossRef]
- Kalinic, B.; Cesca, T.; Mignuzzi, S.; Jacassi, A.; Balasa, I.G.; Maier, S.A.; Sapienza, R.; Mattei, G. All-Dielectric Silicon Nanoslots for Er3+ Photoluminescence Enhancement. Phys. Rev. Appl. 2020, 14. [Google Scholar] [CrossRef]
- Michieli, N.; Kalinic, B.; Scian, C.; Cesca, T.; Mattei, G. Emission Rate Modification and Quantum Efficiency Enhancement of Er3+ Emitters by Near-Field Coupling with Nanohole Arrays. ACS Photonics 2018, 5, 2189–2199. [Google Scholar] [CrossRef]
- Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 2013, 7, 958–967. [Google Scholar] [CrossRef]
- Jacob, Z.; Smolyaninov, I.I.; Narimanov, E.E. Broadband Purcell effect: Radiative decay engineering with metamaterials. Appl. Phys. Lett. 2012, 100, 181105. [Google Scholar] [CrossRef] [Green Version]
- Newman, W.D.; Cortes, C.L.; Jacob, Z. Enhanced and directional single-photon emission in hyperbolic metamaterials. J. Opt. Soc. Am. 2013, 30, 766. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Kan, J.J.; Fullerton, E.E.; Liu, Z. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 2014, 9, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Jacob, Z.; Kim, J.Y.; Naik, G.V.; Boltasseva, A.; Narimanov, E.E.; Shalaev, V.M. Engineering photonic density of states using metamaterials. Appl. Phys. B 2010, 100, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Sreekanth, K.V.; De Luca, A.; Strangi, G. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurgin, J.B.; Sun, G.; Soref, R.A. Enhancement of luminescence efficiency using surface plasmon polaritons: Figures of merit. J. Opt. Soc. Am. B 2007, 24, 1968. [Google Scholar] [CrossRef]
- Ferrari, L.; Wu, C.; Lepage, D.; Zhang, X.; Liu, Z. Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 2015, 40, 1–40. [Google Scholar] [CrossRef]
- Maas, R.; Parsons, J.; Engheta, N.; Polman, A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics 2013, 7, 907–912. [Google Scholar] [CrossRef]
- Genchi, D.; Balasa, I.G.; Cesca, T.; Mattei, G. Tunable Third-Order Nonlinear Optical Response in ϵ-Near-Zero Multilayer Metamaterials. Phys. Rev. Appl. 2021, 16. [Google Scholar] [CrossRef]
- Kim, J.; Drachev, V.P.; Jacob, Z.; Naik, G.V.; Boltasseva, A.; Narimanov, E.E.; Shalaev, V.M. Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 2012, 20, 8100. [Google Scholar] [CrossRef]
- Adl, H.P.; Gorji, S.; Habil, M.K.; Suárez, I.; Chirvony, V.S.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Valencia, L.M.; Mata, M.D.L.; Hernández-Saz, J.; et al. Purcell Enhancement and Wavelength Shift of Emitted Light by CsPbI3Perovskite Nanocrystals Coupled to Hyperbolic Metamaterials. ACS Photonics 2020, 7, 3152–3160. [Google Scholar] [CrossRef]
- Lin, H.I.; Shen, K.C.; Liao, Y.M.; Li, Y.H.; Perumal, P.; Haider, G.; Cheng, B.H.; Liao, W.C.; Lin, S.Y.; Lin, W.J.; et al. Integration of Nanoscale Light Emitters and Hyperbolic Metamaterials: An Efficient Platform for the Enhancement of Random Laser Action. ACS Photonics 2018, 5, 718–727. [Google Scholar] [CrossRef]
- Galfsky, T.; Krishnamoorthy, H.N.S.; Newman, W.; Narimanov, E.E.; Jacob, Z.; Menon, V.M. Active hyperbolic metamaterials: Enhanced spontaneous emission and light extraction. Optica 2015, 2, 62. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+. J. Chem. Phys. 1968, 49, 4412–4423. [Google Scholar] [CrossRef]
- Baranov, D.G.; Savelev, R.S.; Li, S.V.; Krasnok, A.E.; Alù, A. Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser Photonics Rev. 2017, 11, 1600268. [Google Scholar] [CrossRef]
- Chance, R.R.; Prock, A.; Silbey, R. Molecular Fluorescence and Energy Transfer Near Interfaces. In Advance in Chemical Physics, Volume XXXVII; John Wiley & Sons: Hoboken, NJ, USA, 1978; Volume X, pp. 1–65. [Google Scholar] [CrossRef]
- Ni, X.; Naik, G.V.; Kildishev, A.V.; Barnakov, Y.; Boltasseva, A.; Shalaev, V.M. Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions. Appl. Phys. Lasers Opt. 2011, 103, 553–558. [Google Scholar] [CrossRef]
- Kalinic, B.; Cesca, T.; Scian, C.; Michieli, N.; Balasa, I.G.; Trave, E.; Mattei, G. Emission Efficiency Enhancement of Er3+ Ions in Silica by Near-Field Coupling With Plasmonic and Pre-Plasmonic Nanostructures. Phys. Status Solidi (A) Appl. Mater. Sci. 2018, 215, 1700437. [Google Scholar] [CrossRef]
- Cesca, T.; Kalinic, B.; Michieli, N.; Maurizio, C.; Scian, C.; Devaraju, G.; Battaglin, G.; Mazzoldi, P.; Mattei, G. Energy-transfer from ultra-small Au nanoclusters to Er3+ ions: A short-range mechanism. Phys. Chem. Chem. Phys. 2014, 16, 15158. [Google Scholar] [CrossRef]
- Cesca, T.; Maurizio, C.; Kalinic, B.; Perotto, G.; Mazzoldi, P.; Trave, E.; Battaglin, G.; Mattei, G. Implantation damage effects on the Er3+ luminescence in silica. Opt. Express 2012, 20, 16639. [Google Scholar] [CrossRef]
- Drexhage, K.H. Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1970, 1–2, 693–701. [Google Scholar] [CrossRef]
- Noginova, N.; Zhu, G.; Mavy, M.; Noginov, M.A. Magnetic dipole based systems for probing optical magnetism. J. Appl. Phys. 2008, 103, 7–10. [Google Scholar] [CrossRef]
- Karaveli, S.; Zia, R. Spectral Tuning by Selective Enhancement of Electric and Magnetic Dipole Emission. Phys. Rev. Lett. 2011, 106, 193004. [Google Scholar] [CrossRef] [Green Version]
- Hussain, R.; Kruk, S.S.; Bonner, C.E.; Noginov, M.A.; Staude, I.; Kivshar, Y.S.; Noginova, N.; Neshev, D.N. Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures. Opt. Lett. 2015, 40, 1659. [Google Scholar] [CrossRef] [PubMed]
- Noginova, N.; Hussain, R.; Noginov, M.A.; Vella, J.; Urbas, A. Modification of electric and magnetic dipole emission in anisotropic plasmonic systems. Opt. Express 2013, 21, 23087. [Google Scholar] [CrossRef] [PubMed]
- Vaskin, A.; Mashhadi, S.; Steinert, M.; Chong, K.E.; Keene, D.; Nanz, S.; Abass, A.; Rusak, E.; Choi, D.Y.; Fernandez-Corbaton, I.; et al. Manipulation of Magnetic Dipole Emission from Eu3+ with Mie-Resonant Dielectric Metasurfaces. Nano Lett. 2019, 19, 1015–1022. [Google Scholar] [CrossRef]
- López-Morales, G.I.; Li, M.; Yadav, R.K.; Kalluru, H.R.; Basu, J.K.; Meriles, C.A.; Menon, V.M. Spontaneous emission dynamics of Eu3+ ions coupled to hyperbolic metamaterials. Appl. Phys. Lett. 2021, 118, 011106. [Google Scholar] [CrossRef]
- Sturmberg, B.C.; Dossou, K.B.; Lawrence, F.J.; Poulton, C.G.; McPhedran, R.C.; de Sterke, C.M.; Botten, L.C. EMUstack: An open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method. Comput. Phys. Commun. 2016, 202, 276–286. [Google Scholar] [CrossRef]
- Wood, B.; Pendry, J.B.; Tsai, D.P. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 2006, 74. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.B.; Christy, R.W. Optical Constant of the Nobel Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Boidin, R.; Halenkovič, T.; Nazabal, V.; Beneš, L.; Němec, P. Pulsed laser deposited alumina thin films. Ceram. Int. 2016, 42, 1177–1182. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 1998; Volume 3. [Google Scholar] [CrossRef]
- Cesca, T.; Kalinic, B.; Maurizio, C.; Scian, C.; Battaglin, G.; Mazzoldi, P.; Mattei, G. Interatomic Coupling of Au Molecular Clusters and Er3+ Ions in Silica. ACS Photonics 2015, 2, 96–104. [Google Scholar] [CrossRef]
- Kalinic, B.; Cesca, T.; Michieli, N.; Scian, C.; Battaglin, G.; Mazzoldi, P.; Mattei, G. Controlling the emission rate of Er3+ ions by dielectric coupling with thin films. J. Phys. Chem. C 2015, 119, 6728–6736. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genchi, D.; Kalinic, B.; Balasa, I.G.; Cesca, T.; Mattei, G. Selective Control of Eu3+ Radiative Emission by Hyperbolic Metamaterials. Materials 2022, 15, 4923. https://doi.org/10.3390/ma15144923
Genchi D, Kalinic B, Balasa IG, Cesca T, Mattei G. Selective Control of Eu3+ Radiative Emission by Hyperbolic Metamaterials. Materials. 2022; 15(14):4923. https://doi.org/10.3390/ma15144923
Chicago/Turabian StyleGenchi, Domenico, Boris Kalinic, Ionut Gabriel Balasa, Tiziana Cesca, and Giovanni Mattei. 2022. "Selective Control of Eu3+ Radiative Emission by Hyperbolic Metamaterials" Materials 15, no. 14: 4923. https://doi.org/10.3390/ma15144923
APA StyleGenchi, D., Kalinic, B., Balasa, I. G., Cesca, T., & Mattei, G. (2022). Selective Control of Eu3+ Radiative Emission by Hyperbolic Metamaterials. Materials, 15(14), 4923. https://doi.org/10.3390/ma15144923