Heat Transport on Ultrashort Time and Space Scales in Nanosized Systems: Diffusive or Wave-like?
Abstract
:1. Introduction
2. Non-Fourier Heat Conduction Models
2.1. Hyperbolic Heat Conduction Equation (HHCE)
2.2. Two-Temperature Models
2.2.1. Two Temperature Parabolic Model (TTPM)
2.2.2. Two-Temperature Hyperbolic Model (TTHM)
2.3. Guyer and Krumhansl (G–K) Equation
2.4. Jeffreys Type Equation
3. Result and Discussion
3.1. Generalization of the G–K and the Jeffreys Type Equations
3.2. Hyperbolic Temperature Waves—Virtual Experiment
3.3. Hierarchy of Heat Conduction Equations in Systems with Couplings
3.4. Comments on Definition of Temperature in Out-of-Equilibrium Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cahill, D.G.; Ford, W.K.; Goodson, K.E.; Mahan, G.D.; Majumdar, A.; Maris, H.J.; Merlin, R.; Phillpot, S.R. Nanoscale thermal transport. J. Appl. Phys. 2003, 93, 793–818. [Google Scholar] [CrossRef] [Green Version]
- Kosmidis, K.; Dassios, G. Monte Carlo simulations in drug release. J. Pharmacokinet. Pharmacodyn. 2019, 46, 65–172. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Guo, H.; Tian, X.; He, T. Nonlocal diffusion-elasticity based on nonlocal mass transfer and nonlocal elasticity and its application in shock-induced responses analysis. Mech. Adv. Mater. Struct. 2019, 28, 827–838. [Google Scholar] [CrossRef]
- Sobolev, S.L. Local Nonequilibrium Electron Transport in Metals after Femtosecond Laser Pulses: A Multi-Temperature Hyperbolic Model. Nanoscale Microscale Thermophys. Eng. 2021, 25, 153–165. [Google Scholar] [CrossRef]
- Gandolfi, M.; Giannetti, C.; Banfi, F. Temperonic crystal: A superlattice for temperature waves in graphene. Phys. Rev. Lett. 2020, 125, 265901. [Google Scholar] [CrossRef]
- Mazza, G.; Gandolfi, M.; Capone, M.; Banfi, F.; Giannetti, C. Thermal dynamics and electronic temperature waves in layered correlated materials. Nat. Commun. 2021, 12, 6904–6911. [Google Scholar] [CrossRef]
- Xue, T.; Zhang, X.; Tamma, K.K. Investigation of thermal inter-facial problems involving non-locality in space and time. Int. Commun. Heat Mass Transf. 2018, 99, 37–42. [Google Scholar] [CrossRef]
- Kovács, K. Analytical treatment of nonhomogeneous initial states for non-Fourier heat equations. Int. Commun. Heat Mass Transf. 2022, 134, 106021. [Google Scholar] [CrossRef]
- Ben Aissa, M.F.; Rezgui, H.; Nasri, F.; Belmabrouk, H.; Guizani, A. Thermal transport in graphene field-effect transistors with ultrashort channel length. Superlattices Microstruct. 2019, 128, 265–273. [Google Scholar] [CrossRef]
- Joseph, M.A.; Cao, B. Electron Heat Source Driven Heat Transport in GaN at Nanoscale: Electron–Phonon Monte Carlo Simulations and a Two Temperature Model. Materials 2022, 15, 1651. [Google Scholar] [CrossRef]
- Guo, H.; He, T.; Tian, T.; Shang, F. Size-dependent mechanical-diffusion responses of multilayered composite nanoplates. Waves Random Complex Media 2021, 31, 2355–2384. [Google Scholar] [CrossRef]
- Joseph, D.D.; Preziosi, L. Heat waves. Rev. Mod. Phys. 1989, 61, 41–73. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, H.; You, W.; Tao, Z.; Zhong, Y.; Kabeer, F.C.; Maldonado, P.; Oppeneer, P.M.; Bauer, M.; Rossnagel, K.; et al. Coherent modulation of the electron temperature and electron-phonon couplings in a 2D material. Proc. Natl. Acad. Sci. USA 2020, 117, 8788–8793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobolev, S.L.; Cao, B.Y.; Kudinov, I.V. Non-Fourier heat transport across 1D nano film between thermal reservoirs with different boundary resistances. Phys. E 2021, 128, 114610. [Google Scholar] [CrossRef]
- Belmabrouk, H.; Rezgui, H.; Nasri, F.; Aissa, M.F.B.; Guizani, A.A. Interfacial heat transport across multilayer nanofilms in ballistic–diffusive regime. Eur. Phys. J. Plus 2020, 135, 109–117. [Google Scholar] [CrossRef]
- Xu, M. Nonlocal heat conduction in silicon nanowires and carbon nanotubes. Heat Mass Transf. 2020, 57, 843–852. [Google Scholar] [CrossRef]
- Xu, M. A non-local constitutive model for nano-scale heat conduction. Int. J. Therm. Sci. 2018, 134, 594–600. [Google Scholar] [CrossRef]
- Serdyukov, S.I. Macroscopic Entropy of Non-Equilibrium Systems and Postulates of Extended Thermodynamics: Application to Transport Phenomena and Chemical Reactions in Nanoparticles. Entropy 2018, 20, 802–819. [Google Scholar] [CrossRef] [Green Version]
- Famà, A.; Restuccia, L.; Ván, P. Generalized ballistic-conductive heat transport laws in three-dimensional isotropic materials. Contin. Mech. Thermodyn. 2021, 33, 403–430. [Google Scholar] [CrossRef]
- Calvo-Schwarzwälder, M.; Myers, T.G.; Hennessy, M.G. The one-dimensional Stefan problem with non-Fourier heat conduction. Int. J. Therm. Sci. 2020, 150, 106210. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, M.G.; Calvo-Schwarzwälder, M.; Myers, T.G. Asymptotic analysis of the Guyer–Krumhansl–Stefan model for nanoscale solidification. Appl. Math. Model. 2018, 61, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Saanouni, K.; Forest, S.; Hu, P. The micromorphic approach to generalized heat equations. J. Non-Equilibr. Thermodyn. 2017, 42, 327–358. [Google Scholar] [CrossRef]
- Li, H.-L.; Hua, Y.-C.; Cao, B.-Y. A hybrid phonon Monte Carlo-diffusion method for ballistic-diffusive heat conduction in nano- and micro- structures. Int. J. Heat Mass Transf. 2018, 127, 1014–1022. [Google Scholar] [CrossRef]
- Li, H.-L.; Shiomi, J.; Cao, B.Y. Ballistic-Diffusive Heat Conduction in Thin Films by Phonon Monte Carlo Method: Gray Medium Approximation Versus Phonon Dispersion. J. Heat Transf. 2020, 142, 112502. [Google Scholar] [CrossRef]
- Lurie, S.A.; Belov, P.A. On the nature of the relaxation time, the Maxwell–Cattaneo and Fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivity. Contin. Mech. Thermodyn. 2020, 32, 709–728. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Nonlocal approach to nonequilibrium thermodynamics and nonlocal heat diffusion processes. Contin. Mech. Thermodyn. 2018, 30, 889–915. [Google Scholar] [CrossRef]
- Picandet, V.; Challamel, N. Nonlocal thermal diffusion in one-dimensional periodic lattice. Int. J. Heat Mass Transf. 2021, 180, 121753. [Google Scholar] [CrossRef]
- Li, C.; Tian, X.; He, T. Size-dependent buckling analysis of Euler–Bernoulli nanobeam under non-uniform concentration. Arch. Appl. Mech. 2020, 90, 1845–1860. [Google Scholar] [CrossRef]
- Sobolev, S.L. On hyperbolic heat-mass transfer equation. Int. J. Heat Mass Transf. 2018, 122, 629–630. [Google Scholar] [CrossRef]
- Sobolev, S.L. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux. Phys. Rev. E 2018, 97, 022122. [Google Scholar] [CrossRef] [Green Version]
- Kudinov, V.A.; Eremin, A.V.; Kudinov, I.V. The development and investigation of a strongly non-equilibrium model of heat transfer in fluid with allowance for the spatial and temporal non-locality and energy dissipation. Thermophys. Aeromech. 2017, 24, 901–907. [Google Scholar] [CrossRef]
- Brorson, S.D.; Fujimoto, J.G.; Ippen, E.P. Femtosecond Electronic Heat-Transport Dynamics in Thin Gold Films. Phys. Rev. Lett. 1987, 59, 1962–1965. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, T.; Elsayed-Ali, H.E.; Smith, G.O.; Suarez, C.; Bron, W.E. Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures. Phys. Rev. B 1993, 48, 15488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, C.; Bron, W.E.; Juhasz, T. Dynamics and Transport of Electronic Carriers in Thin Gold Films. Phys. Rev. Lett. 1995, 75, 4536–4539. [Google Scholar] [CrossRef]
- Huberman, S.; Duncan, R.A.; Chen, K.; Song, B.; Chiloyan, V.; Ding, Z.; Maznev, A.A.; Chen, G.; Nelson, K.A. Observation of second sound in graphite at temperatures above 100 K. Science 2019, 364, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, S.L. Rapid phase transformation under local non-equilibrium diffusion conditions. Mater. Sci. Technol. 2015, 31, 1607–1617. [Google Scholar] [CrossRef]
- Humadi, H.; Hoyt, J.; Provatas, N. A Phase Field Crystal Study of Solute Trapping. Phys. Rev. E 2013, 87, 022404. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, S.L. Two-temperature discrete model for nonlocal heat conduction. J. Phys. III France 1993, 3, 2261–2298. [Google Scholar] [CrossRef]
- Mikheeva, G.V.; Pashin, A.V. Investigation of heat transfer in metal nanofilms irradiated with ultrashort laser pulses: Two-temperature model. J. Phys. Conf. Ser. 2021, 2094, 22023. [Google Scholar] [CrossRef]
- Xue, T.; Zhang, X.; Tamma, K.K. On a generalized non-local two-temperature heat transfer DAE modeling/simulation methodology for metal-nonmetal thermal inter-facial problems. Int. J. Heat Mass Transf. 2019, 138, 508–515. [Google Scholar] [CrossRef]
- Cimmelli, V.A. Different thermodynamic theories and different conduction laws. J. Non-Equilib. Thermodyn. 2009, 34, 299–333. [Google Scholar] [CrossRef]
- Ván, P.; Fülöp, T. Universality in heat conduction theory: Weakly nonlocal thermodynamics. Ann. Phys. 2012, 524, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, A.; Carlomagno, I.; Di Domenico, M. Nonlocal and nonlinear effects in hyperbolic heat transfer in a two-temperature model. Z. Angew. Math. Phys. 2021, 72, 7–15. [Google Scholar] [CrossRef]
- Majchrzak, E.; Dziatkiewicz, J. Second-order two-temperature model of heat transfer processes in a thin metal film subjected to an ultrashort laser pulse. Arch. Mech. 2019, 71, 377–391. [Google Scholar]
- Gonzalez-Narvaez, R.E.; de Haro, M.L.; Vázquez, F. Internal Structure and Heat Conduction in Rigid Solids: A Two-Temperature Approach. J. Non-Equilib. Thermodyn. 2020, 47, 13–30. [Google Scholar] [CrossRef]
- Bora, A.; Dai, W.; Wilson, J.P.; Boyt, J.C.; Sobolev, S.L. Neural network method for solving nonlocal two-temperature nanoscale heat conduction in gold films exposed to ultrashort-pulsed lasers. Int. J. Heat Mass Transf. 2022, 190, 122791. [Google Scholar] [CrossRef]
- Bora, A.; Dai, W.; Wilson, J.P.; Boyt, J.C. Neural network method for solving parabolic two-temperature microscale heat conduction in double-layered thin films exposed to ultrashort-pulsed lasers. Int. J. Heat Mass Transf. 2021, 178, 121616. [Google Scholar] [CrossRef]
- Gula, I.A.; Samsonov, A.V. A model for the expression of gap genes based on the Jeffreys-type equation. Bioinformatics 2015, 31, 714–719. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Sumit Kumar, S. Modelling the thermal response of laser-irradiated biological samples through generalized non-Fourier heat conduction models: A review. Annu. Rev. Heat Transf. [CrossRef]
- Sudár, Á.; Futaki, G.; Kovács, R. Continuum Modeling Perspectives of Non-Fourier Heat Conduction in Biological Systems. J. Non-Equilib. Thermodyn. 2021, 46, 371–381. [Google Scholar] [CrossRef]
- Kovács, R. Mathematical aspects of non-Fourier heat equations. J. Comput. Appl. Mech. 2022, 17, 1–12. [Google Scholar] [CrossRef]
- Fehér, A.; Kovács, R. On the evaluation of non-Fourier effects in heat pulse experiments. Int. J. Eng. Sci. 2021, 169, 103577. [Google Scholar] [CrossRef]
- Kovács, R.; Feher, A.; Sobolev, S.L. On the Two-Temperature Description of Heterogeneous Materials. On the two-temperature description of heterogeneous materials. Int. J. Heat Mass Transf. 2022, 194, 123021. [Google Scholar] [CrossRef]
- Roetzela, W.; Putra, N.; Das, S.K. Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int. J. Therm. Sci. 2003, 42, 541–552. [Google Scholar] [CrossRef]
- Maillet, D. A review of the models using the Cattaneo and Vernotte hyperbolic heat equation and their experimental validation. Int. J. Therm. Sci. 2019, 139, 424–432. [Google Scholar] [CrossRef]
- Bright, T.J.; Zhang, Z.M. Common Misperceptions of the Hyperbolic Heat Equation. J. Thermophys. Heat Transf. 2009, 23, 601–607. [Google Scholar] [CrossRef]
- Herwig, H.; Beckert, K. Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomoneous inner structure. Heat Mass Transf. 2000, 36, 387–392. [Google Scholar] [CrossRef]
- Liu, K.C.; Chen, H.T.; Wang, Y.N. An inspection to the hyperbolic heat conduction problem in processed meat. Therm. Sci. 2017, 21, 303–308. [Google Scholar] [CrossRef]
- Mariano, P.M.; Spadini, M. Sources of Finite Speed Temperature Propagation. J. Non-Equilib. Thermodyn. 2022, 47, 165–178. [Google Scholar] [CrossRef]
- Guyer, R.A.; Krumhansl, J.A. Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 1966, 148, 778–788. [Google Scholar] [CrossRef]
- Sobolev, S.L. Effective temperature in nonequilibrium state with heat flux using discrete variable model. Phys. Lett. A 2017, 381, 2893–2897. [Google Scholar] [CrossRef]
- Sobolev, S.L. Diffusion-stress coupling in liquid phase during rapid solidification of binary mixtures. Phys. Lett. A 2014, 378, 475–479. [Google Scholar] [CrossRef]
- Ván, P.; Berezovski, A.; Fülöp, T.; Gróf, G.; Kovács, R.; Lovas, Á.; Verhás, J. Guyer-Krumhansl–type heat conduction at room temperature. EPL (Europhys. Lett.) 2017, 118, 50005–50006. [Google Scholar] [CrossRef] [Green Version]
- Fülöp, T.; Kovács, R.; Lovas, Á.; Rieth, Á.; Fodor, T.; Szücs, M.; Ván, P.; Gróf, G. Emergence of Non-Fourier Hierarchies. Entropy 2018, 20, 832. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.J.; Cao, B.Y. Thermal wave propagation in graphene studied by molecular dynamics simulations. Chin. Sci. Bull. 2014, 59, 3495–3503. [Google Scholar] [CrossRef]
- Sobolev, S.L.; Kudinov, I.V. Extended Nonequilibrium Variables for 1D Hyperbolic Heat Conduction. J. Non-Equilib. Thermodyn. 2020, 45, 209–221. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobolev, S.L.; Dai, W. Heat Transport on Ultrashort Time and Space Scales in Nanosized Systems: Diffusive or Wave-like? Materials 2022, 15, 4287. https://doi.org/10.3390/ma15124287
Sobolev SL, Dai W. Heat Transport on Ultrashort Time and Space Scales in Nanosized Systems: Diffusive or Wave-like? Materials. 2022; 15(12):4287. https://doi.org/10.3390/ma15124287
Chicago/Turabian StyleSobolev, S. L., and Weizhong Dai. 2022. "Heat Transport on Ultrashort Time and Space Scales in Nanosized Systems: Diffusive or Wave-like?" Materials 15, no. 12: 4287. https://doi.org/10.3390/ma15124287
APA StyleSobolev, S. L., & Dai, W. (2022). Heat Transport on Ultrashort Time and Space Scales in Nanosized Systems: Diffusive or Wave-like? Materials, 15(12), 4287. https://doi.org/10.3390/ma15124287