Effect of Potassium Aluminum Sulfate Application on the Viability of Fibroblasts on a CAD-CAM Feldspathic Ceramic before and after Thermocycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
- FC: no alum application or thermocycling;
- FCT: thermocycling without alum application;
- FA: alum application without thermocycling;
- FAT: alum application and thermocycling.
2.2. Cell Viability Assessment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zohdy, M.H.; El Hossamy, M.B.; El-Naggar, A.W.M.; Fathalla, A.I.; Ali, N.M. Novel UV-protective formulations for cotton, PET fabrics and their blend utilizing irradiation technique. Eur. Polym. J. 2009, 45, 2926–2934. [Google Scholar] [CrossRef]
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Glenny, A. The antigenic value of toxoid precipitated by potassium alum. J. Pathol. Bacteriol. 1926, 29, 38–45. [Google Scholar]
- Kool, M.; Fierens, K.; Lambrecht, B.N. Alum adjuvant: Some of the tricks of the oldest adjuvant. J. Med. Microbiol. 2012, 61, 927–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putt, M.S.; Kleber, C.J.; Smith, C.E. Evaluation of an alum-containing mouthrinse in children for plaque and gingivitis inhibition during 4 weeks of supervised use. Pediatr. Dent. 1996, 18, 139–144. [Google Scholar]
- Hussein, A.A. The effects of different concentration of Alum solutions on plaque and bleeding levels. J. Pharm. Sci. Res. 2019, 11, 1078–1081. [Google Scholar]
- Chethan, J.; Bb, P.; Hassan, S.; Sujith, D.; Student, P. Effectiveness of alum and chlorhexidine mouth rinses on oral hygiene of school children aged 13–15 yrs: A comparative in vivo study. Indian J. Orthod. Dentofac. 2016, 2, 119–122. [Google Scholar]
- Rupesh, S.; Winnier, J.J.; Nayak, U.A.; Rao, A.P.; Reddy, N.V. Comparative evaluation of the effects of an alum-containing mouthrinse and a saturated saline rinse on the salivary levels of Streptococcus mutans. J. Indian Soc. Pedod. Prev. Dent. 2010, 28, 138–144. [Google Scholar] [CrossRef]
- Mourughan, K.; Suryakanth, M.P. Evaluation of an alum-containing mouthrinse for inhibition of salivary streptococcus mutans levels in children—A controlled clinical trial. J. Indian Soc. Pedod. Prev. Dent. 2004, 22, 100–105. [Google Scholar]
- Bihani, S.N.; Damle, S.G. Evaluation of an alum containing mouthrinse on plaque and gingivitis inhibition over 2 weeks of supervised use. J. Indian Soc. Pedod. Prev. Dent. 1997, 15, 34–38. [Google Scholar]
- Kleber, C.J.; Putt, M.S.; Smith, C.E.; Gish, C.W. Effect of supervised use of an alum mouthrinse on dental caries incidence in caries-susceptible children: A pilot study. ASDC J. Dent. Child. 1996, 63, 393–402. [Google Scholar] [PubMed]
- Rupesh, S.; Winnier, J.; Nayak, U.; Rao, A.; Reddy, V. The effects of an alum-containing mouthrinse and a saturated saline rinse on existing plaque levels in children. J. Contemp. Dent. 2015, 5, 7–11. [Google Scholar]
- Mozaffari, E.; Maleki, B. Alum mineral and the importance for textile dyeing. Curr. Trends Fash. Technol. Text. Eng. 2018, 3, 85–87. [Google Scholar] [CrossRef]
- Dede, D.; Ceylan, G.; Yilmaz, B. Effect of brand and shade of resin cements on the final color of lithium disilicate ceramic. J. Prosthet. Dent. 2017, 117, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.N.; Yu, B.; Lee, Y.K. Spectroradiometric and spectrophotometric translucency of ceramic materials. J. Prosthet. Dent. 2010, 104, 239–246. [Google Scholar] [CrossRef]
- Alp, G.; Subasi, M.G.; Johnston, W.M.; Yilmaz, B. Effect of surface treatments and coffee thermocycling on the color and translucency of CAD-CAM monolithic glass-ceramic. J. Prosthet. Dent. 2018, 120, 263–268. [Google Scholar] [CrossRef]
- Acar, O.; Yilmaz, B.; Altintas, S.H.; Chandrasekaran, I.; Johnston, W.M. Color stainability of CAD/CAM and nanocomposite resin materials. J. Prosthet. Dent. 2016, 115, 71–75. [Google Scholar] [CrossRef]
- Sari, T.; Ural, C.; Yüzbasioglu, E.; Duran, I.; Cengiz, S.; Kavut, I. Color match of a feldspathic ceramic CAD-CAM material for ultrathin laminate veneers as a function of substrate shade, restoration color, and thickness. J. Prosthet. Dent. 2018, 119, 455–460. [Google Scholar] [CrossRef]
- Atay, A.; Oruç, S.; Ozen, J.; Sipahi, C. Effect of accelerated aging on the color stability of feldspathic ceramic treated with various surface treatments. Quintessence Int. 2008, 39, 603–609. [Google Scholar]
- Arif, R.; Yilmaz, B.; Johnston, W.M. In vitro color stainability and relative translucency of CAD-CAM restorative materials used for laminate veneers and complete crowns. J. Prosthet. Dent. 2019, 122, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Turgut, S.; Kılınç, H.; Bağış, B. Effect of UV aging on translucency of currently used esthetic CAD-CAM materials. J. Esthet. Restor. Dent. 2019, 31, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Gürdal, I.; Atay, A.; Eichberger, M.; Cal, E.; Üsümez, A.; Stawarczyk, B. Color change of CAD-CAM materials and composite resin cements after thermocycling. J. Prosthet. Dent. 2018, 120, 546–552. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kang, K.H.; Att, W. Evaluation of the response of esthetic restorative materials to ultraviolet aging. J. Prosthet. Dent. 2021, 126, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Akay, C.; Cevik, P.; Karakis, D.; Sevim, H. In Vitro cytotoxicity of maxillofacial silicone elastomers: Effect of nano-particles. J. Prosthodont. 2018, 27, 584–587. [Google Scholar] [CrossRef]
- Gerlier, D.; Thomasset, N. Use of MTT colorimetric assay to measure cell activation. J. Immunol. Methods. 1986, 94, 57–63. [Google Scholar] [CrossRef]
- Vajrabhaya, L.O.; Korsuwannawong, S. Cytotoxicity evaluation of a Thai herb using tetrazolium (MTT) and sulforhodamine B (SRB) assays. Anal. Sci. Technol. 2018, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ong, T.H.D.; Yu, N.; Meenashisundaram, G.K.; Schaller, B.; Gupta, M. Insight into cytotoxicity of Mg nanocomposites using MTT assay technique. Mater. Sci. Eng. C 2017, 78, 647–652. [Google Scholar] [CrossRef]
- Groessner-Schreiber, B.; Neubert, A.; Müller, W.D.; Hopp, M.; Griepentrog, M.; Lange, K.P. Fibroblast growth on surface-modified dental implants: An in vitro study. J. Biomed. Mater. Res. A 2003, 64, 591–599. [Google Scholar] [CrossRef]
- Hanks, C.T.; Anderson, M.; Craig, R.G. Cytotoxic effects of dental cements on two cell culture systems. J. Oral Pathol. 1981, 10, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Sigusch, B.W.; Pflaum, T.; Völpel, A.; Gretsch, K.; Hoy, S.; Watts, D.C.; Jandt, K.D. Resin-composite cytotoxicity varies with shade and irradiance. Dent. Mater. 2012, 28, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Ersahan, S.; Oktay, E.A.; Sabuncuoglu, F.A.; Karaoglanoglu, S.; Aydın, N.; Suloglu, A.K. Evaluation of the cytotoxicity of contemporary glass-ionomer cements on mouse fibroblasts and human dental pulp cells. Eur. Arch. Paediatr. Dent. 2020, 21, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Thonemann, B.; Schmalz, G.; Hiller, K.A.; Schweikl, H. Responses of L929 mouse fibroblasts, primary and immortalized bovine dental papilla-derived cell lines to dental resin components. Dent. Mater. 2002, 18, 318–323. [Google Scholar] [CrossRef]
- Kim, S.H.; Choi, Y.S.; Kang, K.H.; Att, W. Effects of thermal and mechanical cycling on the mechanical strength and surface properties of dental CAD-CAM restorative materials. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef] [PubMed]
Groups | |||||
---|---|---|---|---|---|
Time Intervals | C | FC | FA | FCT | FAT |
24 h | 0.78 ± 0.09 bA | 0.56 ± 0.21 aB | 0.56 ± 0.1 aB | 0.5 ± 0.08 aB | 0.55 ± 0.13 aB |
72 h | 0.63 ± 0.06 aAB | 0.74 ± 0.16 bA | 0.70 ± 0.13 aAB | 0.64 ± 0.21 aAB | 0.56 ± 0.12 aB |
Groups | ||||
---|---|---|---|---|
Elements | FC | FA | FCT | FAT |
C | 7.89 | 12.62 | 7.74 | 7.88 |
O | 50.33 | 45.48 | 47.5 | 46.95 |
Na | 6.26 | 4.62 | 5.25 | 5.11 |
Al | 10.82 | 10.19 | 11.28 | 11.1 |
Si | 21.8 | 22.53 | 24.36 | 24.84 |
K | 2.91 | 4.11 | 3.88 | 4.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çakmak, G.; Akay, C.; Donmez, M.B.; Mumcu, E.; Akan, H.S.; Sasany, R.; Abou-Ayash, S.; Yilmaz, B. Effect of Potassium Aluminum Sulfate Application on the Viability of Fibroblasts on a CAD-CAM Feldspathic Ceramic before and after Thermocycling. Materials 2022, 15, 4232. https://doi.org/10.3390/ma15124232
Çakmak G, Akay C, Donmez MB, Mumcu E, Akan HS, Sasany R, Abou-Ayash S, Yilmaz B. Effect of Potassium Aluminum Sulfate Application on the Viability of Fibroblasts on a CAD-CAM Feldspathic Ceramic before and after Thermocycling. Materials. 2022; 15(12):4232. https://doi.org/10.3390/ma15124232
Chicago/Turabian StyleÇakmak, Gülce, Canan Akay, Mustafa Borga Donmez, Emre Mumcu, Handan Sevim Akan, Rafat Sasany, Samir Abou-Ayash, and Burak Yilmaz. 2022. "Effect of Potassium Aluminum Sulfate Application on the Viability of Fibroblasts on a CAD-CAM Feldspathic Ceramic before and after Thermocycling" Materials 15, no. 12: 4232. https://doi.org/10.3390/ma15124232