Experiment and Numerical Simulation of Damage Progression in Transparent Sandwich Structure under Impact Load
Abstract
:1. Introduction
2. Transparent Sandwich Structure
3. Experiment
3.1. Experimental Setup
3.2. Structure Description
3.3. Experimental Results
3.3.1. Damage Evolution of the Strike Face
3.3.2. Ceramic Glass Layer
3.3.3. Inorganic Glass Layer
4. Numerical Simulation of Peridynamics
4.1. Model Description
4.2. Material Model
4.3. Simulation Results and Analysis
4.3.1. Damage Evolution in the Ceramic Glass Layer
4.3.2. Damage Evolution in the Inorganic Glass Layer
4.3.3. Splashing of Glass Fragments
4.3.4. Energy Absorption
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, S.; Carlsson, L.A. Debonding and crack kinking in foam core sandwich beams—II. Experimental investigation. Eng. Fract. Mech. 1994, 47, 825–841. [Google Scholar] [CrossRef]
- Burlayenko, V.N.; Sadowski, T. Dynamic behaviour of sandwich plates containing single/multiple debonding. Comput. Mater. Sci. 2011, 50, 1263–1268. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, C. Sandwich diffusion model for moisture absorption of flax/glass fiber reinforced hybrid composite. Compos. Struct. 2017, 188, 1–6. [Google Scholar] [CrossRef]
- Funari, M.F.; Greco, F.; Lonetti, P. Sandwich panels under interfacial debonding mechanisms. Compos. Struct. 2018, 203, 310–320. [Google Scholar] [CrossRef]
- Funari, M.F.; Greco, F.; Lonetti, P. Dynamic debonding in layered structures: A coupled ALE-cohesive approach. Frat. ed Integrità Strutt. 2017, 41, 524–535. [Google Scholar] [CrossRef] [Green Version]
- Bless, S.; Chen, T. Impact damage in layered glass. Int. J. Fract. 2010, 162, 151–158. [Google Scholar] [CrossRef]
- Krauthammer, T.; Altenberg, A. Negative Phase Blast Effects on Glass Panels. Int. J. Impact Eng. 2000, 24, 1–17. [Google Scholar] [CrossRef]
- Hooper, P.; Sukhram, R.; Blackman, B.; Dear, J. On the Blast Resistance of Laminated Glass. Int. J. Solids Struct. 2012, 49, 899–918. [Google Scholar] [CrossRef] [Green Version]
- Banks-Sills, L. Update: Application of the Finite Element Method to Linear Elastic Fracture Mechanics. Appl. Mech. Rev. 2010, 63, 020803. [Google Scholar] [CrossRef]
- Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 2000, 48, 175–209. [Google Scholar] [CrossRef] [Green Version]
- Silling, S.A.; Askari, E. A meshfree method based on peridynamic model of solid mechanics. Comput. Struct. 2005, 83, 1526–1535. [Google Scholar] [CrossRef]
- Silling, S.A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E. Peridynamic states and constitutive modeling. J. Elast. 2007, 88, 151–184. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Wang, L.; Huang, D.; Xu, Y. An ordinary state-based peridynamic modeling for dynamic fracture of laminated glass under low-velocity impact. Compos. Struct. 2020, 234, 111722. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Y.; Yu, J.; Yen, C.F.; Bobaru, F. Impact damage on a thin glass plate with a thin polycarbonate backing. Int. J. Impact Eng. 2013, 62, 152–165. [Google Scholar] [CrossRef] [Green Version]
- Benitez, T.; Gómez, S.Y.; De Oliveira, A.P.N.; Travitzky, N.; Hotza, D. Transparent ceramic and glass-ceramic materials for armor applications. Ceram. Int. 2017, 43, 13031–13046. [Google Scholar] [CrossRef]
- Ganesh, I. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev. 2013, 58, 63–112. [Google Scholar] [CrossRef]
- Ren, B.; Wu, C.; Askari, E. A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis. Int. J. Impact Eng. 2017, 99, 14–25. [Google Scholar] [CrossRef]
- Bobaru, F.; Ha, Y.; Hu, W. Damage progression from impact in layered glass modeled with peridynamics. Cent. Eur. J. Eng. 2012, 2, 551–561. [Google Scholar] [CrossRef] [Green Version]
Material | (kg/m3) | E (GPa) | Gt (J/m2) | HSFAC |
---|---|---|---|---|
Ceramic glass | 3580 | 190 | 40 | 0.8 |
Inorganic glass | 2530 | 72 | 15.47 | 0.8 |
PC | 1200 | 2 | 4 | 0.8 |
(kg/m3) | μ | A (MPa) | B (MPa) |
---|---|---|---|
1100 | 0.495 | 1.6 | 0.06 |
(kg/m3) | μ | E (GPa) |
---|---|---|
7850 | 0.28 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Li, Y.; Luo, H.; Zheng, X.; Li, Z. Experiment and Numerical Simulation of Damage Progression in Transparent Sandwich Structure under Impact Load. Materials 2022, 15, 3809. https://doi.org/10.3390/ma15113809
Wang M, Li Y, Luo H, Zheng X, Li Z. Experiment and Numerical Simulation of Damage Progression in Transparent Sandwich Structure under Impact Load. Materials. 2022; 15(11):3809. https://doi.org/10.3390/ma15113809
Chicago/Turabian StyleWang, Mufei, Yuting Li, Haoshun Luo, Xiaoxia Zheng, and Zhiqiang Li. 2022. "Experiment and Numerical Simulation of Damage Progression in Transparent Sandwich Structure under Impact Load" Materials 15, no. 11: 3809. https://doi.org/10.3390/ma15113809
APA StyleWang, M., Li, Y., Luo, H., Zheng, X., & Li, Z. (2022). Experiment and Numerical Simulation of Damage Progression in Transparent Sandwich Structure under Impact Load. Materials, 15(11), 3809. https://doi.org/10.3390/ma15113809