Shear Strength of Nano Silica High-Strength Reinforced Concrete Beams
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Description of the Tested Specimens
2.3. Test Setup and Instruments
3. Experimental Results
3.1. Crack Pattern
3.2. Loads and Vertical Deflections Measured
3.3. Stirrups Strains
4. Code Provisions
4.1. ACI 318-19
4.2. EC 2
4.3. ECP 207
5. Comparison of Test Results with Code Predictions
6. Analysis Using Finite Elements
6.1. Modeling Using Finite Elements
6.2. Reinforcement
6.3. Concrete
6.4. The Finite Element Mesh
6.5. Boundary Conditions
6.6. Test Results vs. Finite Element Predictions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biricik, H.; Sarier, N. Comparative study of the characteristics of nano silica–, silica fume– and fly ash–incorporated cement mortars. Mater. Res. 2014, 17, 570–582. [Google Scholar] [CrossRef]
- Gao, C.; Huang, L.; Yan, L.; Kasal, B.; Li, W.; Jin, R.; Wang, Y.; Li, Y.; Deng, P. Compressive performance of fiber reinforced polymer encased recycled concrete with nanoparticles. J. Mater. Res. Technol. 2021, 14, 2727–2738. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, L.; Wei, H.; Wang, J. A Critical Review on Effect of Nanomaterials on Workability and Mechanical Properties of High-Performance Concrete. Adv. Civ. Eng. 2021, 2021, 8827124. [Google Scholar] [CrossRef]
- Khaloo, A.; Mobini, M.H.; Hosseini, P. Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Constr. Build. Mater. 2016, 113, 188–201. [Google Scholar] [CrossRef]
- Abd El-baky, S.; Yehia, S. An Overview on the Laboratory Investigation of Using Nano-Materials in Concrete. Jokull J. 2018, 68, 93–117. [Google Scholar]
- Amin, M.; Abu El-Hassan, K. Effect of using different types of nano materials on mechanical properties of high strength concrete. Constr. Build. Mater. 2015, 80, 116–124. [Google Scholar] [CrossRef]
- Sharkawi, A.M.; Abd-Elaty, M.A.; Khalifa, O.H. Synergistic influence of micro-nano silica mixture on durability performance of cementious materials. Constr. Build. Mater. 2018, 164, 579–588. [Google Scholar] [CrossRef]
- Mustafa, T.S.; El Hariri, M.O.; Khalafalla, M.S.; Said, Y. Application of nanosilica in reinforced concrete beams. Proc. Inst. Civ. Eng. Struct. Build. 2022, 175, 363–372. [Google Scholar] [CrossRef]
- Rashmi, R.; Padmapriya, R. Experimental and analytical study on flexural behavior of reinforced concrete beams using nano silica. Mater. Today Proc. 2021, 50, 57–69. [Google Scholar] [CrossRef]
- Jaishankar, P.; Vivek, D. Behaviour of Nano Silica in Tension Zone of High Performance Concrete Beams. IOP Conf. Ser. Earth Environ. Sci. 2017, 80, 012028. [Google Scholar] [CrossRef] [Green Version]
- Akbarpour, S.; Dabbagh, H.; Tavakoli, H.R. The Effects of Steel Fiber and Nano-SiO2 on the Cyclic Flexural Behavior of Reinforced LWAC Beams. KSCE J. Civ. Eng. 2018, 22, 3919–3930. [Google Scholar] [CrossRef]
- Erfan, A.M.; Hassan, H.E.; Hatab, K.M.; El-Sayed, T.A. The flexural behavior of nano concrete and high strength concrete using GFRP. Constr. Build. Mater. 2020, 247, 118664. [Google Scholar] [CrossRef]
- Silva, J.; Ismael, R.; Carmo, R.; Lourenço, C.; Soldado, E.; Costa, H.; Julio, E. Influence of nano-SiO2 and nano-Al2O3 additions on the shear strength and the bending moment capacity of RC beams. Constr. Build. Mater. 2016, 123, 35–46. [Google Scholar] [CrossRef]
- AL-Maamar, H.F.N. Shear Strength of Nanosilica Fiber Reinforced Concrete Beams. Ph.D. Thesis, Sudan University of Science and Technology, Khartoum, Sudan, 2016. [Google Scholar]
- Radwan, E.E.; Debaiky, A.S.; Taha, M. The Effect of Nano–Micro Silica Mixture on the Shear Strength of Reinforced Concrete Beams. J. Eng. Res. (ERJ) 2021, 5, 83–90. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Reinforced Concrete and Commentary (ACI 318-19); American Concrete Institute: Farmington Hills, MI, USA, 2019. [Google Scholar]
- EN 1992-1-1; Eurocode 2, Design of Concrete Structures, Part 1–6: General Rules and Rules for Buildings. European Standard: Brussels, Belgium, 2008.
- Egyptian Code Committee 203. Egyptian Code of Practice for Design and Construction of Reinforced Concrete Structures; Housing and Building Research Centre: Cairo, Egypt, 2018. (In Arabic) [Google Scholar]
- ABAQUS. Abaqus Analysis User’s Manual, Version 6.9; Dassault Systems Corp.: Providence, RI, USA, 2014. [Google Scholar]
Properties | Description |
---|---|
Specific gravity | 1.1–1.30 at 20 °C |
Specific surface m2/Kg | 2 × 105 |
SiO2 | >99.50 |
Solubility | Easily soluble in water |
Dynamic viscosity | 6–8 MPa |
Ph | 9.5–10.5 |
Boiling point | 100 °C |
Melting Point | 0 °C |
Flash Point | Inflammable |
Pressure of vapor | 32 hPa at 25 °C |
NS % | Cement kg/m3 | NS kg/m3 | SP % | SP kg/m3 | Sand kg/m3 | Crushed Limestone kg/m3 | Water kg/m3 | Water/Cement Ratio | Average fc′ (MPa) | Average fcu (MPa) | Average ft (MPa) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 800 | 0 | 2 | 16.00 | 800 | 1600 | 200 | 0.25 | 50.10 | 41.20 | 3.20 |
2 | 1 | 792 | 8 | 2 | 15.84 | 800 | 1600 | 198 | 0.25 | 54.20 | 44.50 | 3.51 |
3 | 2 | 784 | 16 | 2 | 15.68 | 800 | 1600 | 196 | 0.25 | 60.40 | 49.60 | 3.80 |
4 | 3 | 768 | 32 | 2 | 15.36 | 800 | 1600 | 192 | 0.25 | 61.30 | 50.80 | 3.90 |
Mix. | Test | ||
---|---|---|---|
Slump (mm) | Air Content (%) | Density (kg/m3) | |
Control with 0% NS | 192 | 1.40 | 2460.2 |
1% NS | 174 | 0.93 | 2468.2 |
2% NS | 169 | 0.83 | 2469.1 |
3% NS | 169 | 0.83 | 2469.1 |
Serial | Beam Designation | Mix. No. | b mm | t mm | d mm | As | ρL% | As’ | a/d | Stirrups ϕ Bar Diameter mm @ Spacing (mm) | ρv% |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | B1 | 1 | 150 | 250 | 192 | 4 ϕ 18 | 3.53 | 2 ϕ 12 | 1.5 | 0 | 0.00 |
2 | B2 | 1.5 | ϕ 6 @ 100 | 0.38 | |||||||
3 | B3 | 2.5 | 0 | 0.00 | |||||||
4 | B4 | 2.5 | ϕ 6 @ 100 | 0.38 | |||||||
5 | B5 | 2 | 150 | 250 | 192 | 4 ϕ 18 | 3.53 | 2 ϕ 12 | 1.5 | 0 | 0.00 |
6 | B6 | 1.5 | ϕ 6 @ 100 | 0.38 | |||||||
7 | B7 | 2.5 | 0 | 0.00 | |||||||
8 | B8 | 2.5 | ϕ 6 @ 100 | 0.38 | |||||||
9 | B9 | 3 | 150 | 250 | 192 | 4 ϕ 18 | 3.53 | 2 ϕ 12 | 1.5 | 0 | 0.00 |
10 | B10 | 1.5 | ϕ 6 @ 100 | 0.38 | |||||||
11 | B11 | 2.5 | 0 | 0.00 | |||||||
12 | B12 | 2.5 | ϕ 6 @ 100 | 0.38 | |||||||
13 | B13 | 4 | 150 | 250 | 192 | 4 ϕ 18 | 3.53 | 2 ϕ 12 | 1.5 | 0 | 0.00 |
14 | B14 | 1.5 | ϕ 6 @ 100 | 0.38 | |||||||
15 | B15 | 2.5 | 0 | 0.00 | |||||||
16 | B16 | 2.5 | ϕ 6 @ 100 | 0.38 |
Serial | Beam Designation | Mix. No. | a/d | Stirrups ϕ Bar Diameter mm @ Spacing (mm) | ρv% | Pcr (kN) | Pu (kN) | ∆u (mm) | Pcr/Pu |
---|---|---|---|---|---|---|---|---|---|
1 | B1 | 1 | 1.5 | 0 | 0.00 | 42.07 | 58.94 | 2.29 | 0.71 |
2 | B2 | 1.5 | ϕ 6 @ 100 | 0.38 | 51.10 | 78.47 | 2.86 | 0.65 | |
3 | B3 | 2.5 | 0 | 0.00 | 49.84 | 70.87 | 2.45 | 0.70 | |
4 | B4 | 2.5 | ϕ 6 @ 100 | 0.38 | 54.67 | 85.61 | 3.10 | 0.64 | |
5 | B5 | 2 | 1.5 | 0 | 0.00 | 48.51 | 66.57 | 2.44 | 0.73 |
6 | B6 | 1.5 | ϕ 6 @ 100 | 0.38 | 53.34 | 85.12 | 3.30 | 0.63 | |
7 | B7 | 2.5 | 0 | 0.00 | 59.92 | 81.41 | 2.60 | 0.74 | |
8 | B8 | 2.5 | ϕ 6 @ 100 | 0.38 | 66.15 | 90.58 | 3.26 | 0.73 | |
9 | B9 | 3 | 1.5 | 0 | 0.00 | 54.67 | 77.21 | 2.63 | 0.71 |
10 | B10 | 1.5 | ϕ 6 @ 100 | 0.38 | 64.82 | 96.04 | 3.08 | 0.67 | |
11 | B11 | 2.5 | 0 | 0.00 | 63.77 | 92.68 | 2.79 | 0.69 | |
12 | B12 | 2.5 | ϕ 6 @ 100 | 0.38 | 81.48 | 104.23 | 3.46 | 0.78 | |
13 | B13 | 4 | 1.5 | 0 | 0.00 | 56.14 | 81.97 | 2.68 | 0.69 |
14 | B14 | 1.5 | ϕ 6 @ 100 | 0.38 | 69.44 | 102.62 | 3.28 | 0.68 | |
15 | B15 | 2.5 | 0 | 0.00 | 66.78 | 96.25 | 2.85 | 0.69 | |
16 | B16 | 2.5 | ϕ 6 @ 100 | 0.38 | 84.35 | 111.16 | 3.53 | 0.76 |
Beam Designation | vuexp. (MPa) | vuACI (MPa) | vuEC (MPa) | vuECP (MPa) | vuexp/vuACI | vuexp/vuEC | vuexp/vuECP |
---|---|---|---|---|---|---|---|
B1 | 2.05 | 1.20 | 1.46 | 1.52 | 1.71 | 1.40 | 1.35 |
B2 | 2.78 | 2.73 | 2.79 | 3.05 | 1.02 | 1.00 | 0.91 |
B3 | 2.46 | 1.20 | 1.46 | 1.52 | 2.05 | 1.68 | 1.62 |
B4 | 2.97 | 2.73 | 2.99 | 3.05 | 1.09 | 0.99 | 0.97 |
B5 | 2.31 | 1.25 | 1.52 | 1.58 | 1.85 | 1.52 | 1.46 |
B6 | 2.96 | 2.78 | 3.05 | 3.11 | 1.06 | 0.97 | 0.95 |
B7 | 2.83 | 1.25 | 1.52 | 1.58 | 2.26 | 1.87 | 1.79 |
B8 | 3.15 | 2.78 | 3.05 | 3.11 | 1.13 | 1.03 | 1.01 |
B9 | 2.68 | 1.32 | 1.60 | 1.67 | 2.03 | 1.68 | 1.60 |
B10 | 3.33 | 2.85 | 3.13 | 3.20 | 1.17 | 1.07 | 1.04 |
B11 | 3.22 | 1.32 | 1.60 | 1.67 | 2.44 | 2.02 | 1.93 |
B12 | 3.62 | 2.85 | 3.13 | 3.20 | 1.27 | 1.16 | 1.13 |
B13 | 2.85 | 1.33 | 1.61 | 1.68 | 2.14 | 1.78 | 1.70 |
B14 | 3.56 | 2.86 | 3.14 | 3.21 | 1.24 | 1.14 | 1.11 |
B15 | 3.34 | 1.33 | 1.61 | 1.68 | 2.51 | 2.08 | 1.99 |
B16 | 3.86 | 2.86 | 3.14 | 3.21 | 1.35 | 1.23 | 1.20 |
Average value | 1.64 | 1.41 | 1.36 |
Beam Designation | Failure Load (kN) | Max. Mid-Span Deflection (mm) | ||
---|---|---|---|---|
Finite Element | EXP./Finite Element | Finite Element | EXP./Finite Element | |
B1 | 62.91 | 0.94 | 2.56 | 0.89 |
B2 | 83.12 | 0.94 | 3.15 | 0.91 |
B3 | 72.28 | 0.98 | 2.72 | 0.90 |
B4 | 91.41 | 0.94 | 3.39 | 0.91 |
B5 | 70.87 | 0.94 | 2.71 | 0.90 |
B6 | 89.97 | 0.95 | 3.60 | 0.92 |
B7 | 86.21 | 0.94 | 2.88 | 0.90 |
B8 | 95.61 | 0.95 | 3.56 | 0.92 |
B9 | 81.75 | 0.94 | 2.91 | 0.90 |
B10 | 101.32 | 0.95 | 3.37 | 0.91 |
B11 | 94.65 | 0.98 | 3.07 | 0.91 |
B12 | 106.65 | 0.98 | 3.76 | 0.92 |
B13 | 82.73 | 0.99 | 2.96 | 0.91 |
B14 | 104.8 | 0.98 | 3.58 | 0.92 |
B15 | 102.56 | 0.94 | 3.14 | 0.91 |
B16 | 116.96 | 0.95 | 3.84 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Mandouh, M.A.; Kaloop, M.R.; Hu, J.-W.; Abd El-Maula, A.S. Shear Strength of Nano Silica High-Strength Reinforced Concrete Beams. Materials 2022, 15, 3755. https://doi.org/10.3390/ma15113755
El-Mandouh MA, Kaloop MR, Hu J-W, Abd El-Maula AS. Shear Strength of Nano Silica High-Strength Reinforced Concrete Beams. Materials. 2022; 15(11):3755. https://doi.org/10.3390/ma15113755
Chicago/Turabian StyleEl-Mandouh, Mahmoud A., Mosbeh R. Kaloop, Jong-Wan Hu, and Ahmed S. Abd El-Maula. 2022. "Shear Strength of Nano Silica High-Strength Reinforced Concrete Beams" Materials 15, no. 11: 3755. https://doi.org/10.3390/ma15113755
APA StyleEl-Mandouh, M. A., Kaloop, M. R., Hu, J.-W., & Abd El-Maula, A. S. (2022). Shear Strength of Nano Silica High-Strength Reinforced Concrete Beams. Materials, 15(11), 3755. https://doi.org/10.3390/ma15113755