A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal
Abstract
1. Introduction
2. Materials and Methods
2.1. Finite Elements Model Studies
2.2. Data Analysis
3. Results
3.1. Stress at the Crown
3.2. Abutment
3.3. Implant
3.4. Bone
4. Discussion
Material | EH | IH | MT | CC | CT |
---|---|---|---|---|---|
Total number of nodes | 61,529 | 102,590 | 120,983 | 120,174 | 127,650 |
Total number of items | 42,373 | 70,200 | 78,599 | 82,528 | 87,618 |
% of distorted elements (Jacobian) | 0 | 0 | 0 | 0 | 0 |
Item size | 1.4 mm | 1.16 mm | 1.04 mm | 1.03 mm | 1.03 mm |
Tolerance | 0.07 mm | 0.05 mm | 0.05 mm | 0.05 mm | 0.05 mm |
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Raoofi, S.; Khademi, M.; Amid, R.; Kadkhodazadeh, M.; Movahhedi, M.R. Comparison of the Effect of Three Abutment-implant Connections on Stress Distribution at the Internal Surface of Dental Implants: A Finite Element Analysis. J. Dent. Res. Dent. Clin. Dent. Prospect. 2013, 7, 132–139. [Google Scholar] [CrossRef]
- Sakka, S.; Baroudi, K.; Nassani, M.Z. Factors Associated with Early and Late Failure of Dental Implants. J. Investig. Clin. Dent. 2012, 3, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Consolaro, A.; de Carvalho, R.S.; Francischone, C.E., Jr.; Consolaro, M.F.M.O.; Francischone, C.E. Saucerização de Implantes Osseointegrados e o Planejamento de Casos Clínicos Ortodônticos Simultâneos. Dent. Press J. Orthod. 2010, 15, 19–30. [Google Scholar] [CrossRef][Green Version]
- Weinstein, A.M.; Klawitter, J.J.; Anand, S.C.; Schuessler, R. Stress Analysis of Porous Rooted Dental Implants. J. Dent. Res. 1976, 55, 772–777. [Google Scholar] [CrossRef]
- Pesqueira, A.A.; Goiato, M.C.; Filho, H.G.; Monteiro, D.R.; dos Santos, D.M.; Haddad, M.F.; Pellizzer, E.P. Use of Stress Analysis Methods to Evaluate the Biomechanics of Oral Rehabilitation with Implants. J. Oral Implantol. 2014, 40, 217–228. [Google Scholar] [CrossRef]
- Ricciardi Coppedê, A.; Lapria Faria, A.C.; Chiarello de Mattos, M.d.G.; Silveira Rodrigues, R.C.; Shibli, J.A.; Faria Ribeiro, R. Mechanical Comparison of Experimental Conical-Head Abutment Screws with Conventional Flat-Head Abutment Screws for External-Hex and Internal Tri-Channel Implant Connections: An In Vitro Evaluation of Loosening Torque. Int. J. Oral Maxillofac. Implant. 2013, 28, e321–e329. [Google Scholar] [CrossRef]
- Formiga, M. Evaluation Using FEM on the Stress Distribution on the Implant, Prosthetic Components and Crown, with Cone Morse, External and Internal Hexagon Connections. Dent. Press Implantol. 2013, 7, 67–75. [Google Scholar]
- Bechelli, A.H. Carga Imediata em Implantologia Oral: Protocolos Diagnósticos, Quirúrgicos e Protéticos; Casos Clinicos; Providence: Buenos Aires, Argentina, 2006. [Google Scholar]
- Gehrke, S.; Junior, J.; Dedavid, B.; Shibli, J. Analysis of Implant Strength After Implantoplasty in Three Implant-Abutment Connection Designs: An In Vitro Study. Int. J. Oral Maxillofac. Implant. 2016, e65–e70. [Google Scholar] [CrossRef]
- Tabata, L.F.; Rocha, E.P.; Barão, V.A.R.; Assunção, W.G. Platform Switching: Biomechanical Evaluation Using Three-Dimensional Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2011, 26, 482–491. [Google Scholar]
- Cho, S.-Y.; Huh, Y.-H.; Park, C.-J.; Cho, L.-R. Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection. Int. J. Periodontics Restor. Dent. 2016, 36, e49–e58. [Google Scholar] [CrossRef]
- Borie, E.; Orsi, I.; Noritomi, P.; Kemmoku, D. Three-Dimensional Finite Element Analysis of the Biomechanical Behaviors of Implants with Different Connections, Lengths, and Diameters Placed in the Maxillary Anterior Region. Int. J. Oral Maxillofac. Implant. 2016, 31, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Anami, L.C.; da Costa Lima, J.M.; Takahashi, F.E.; Neisser, M.P.; Noritomi, P.Y.; Bottino, M.A. Stress Distribution Around Osseointegrated Implants With Different Internal-Cone Connections: Photoelastic and Finite Element Analysis. J. Oral Implantol. 2015, 41, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, D.; Phillips, J.; Connor, M.; Dyer, T.; Kazerounian, K. Hoop Stress and the Conical Connection. J. Oral Implantol. 2015, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, D.-G.; Park, C.-J.; Cho, L.-R. Axial Displacements in External and Internal Implant-Abutment Connection. Clin. Oral Implant. Res. 2014, 25, e83–e89. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.M.; Nogueira-Filho, G.; Tenenbaum, H.C.; Lai, J.Y.; Brito, C.; Döring, H.; Nonhoff, J. Performance of Conical Abutment (Morse Taper) Connection Implants: A Systematic Review. J. Biomed. Mater. Res. A 2014, 102, 552–574. [Google Scholar] [CrossRef]
- Coppedê, A.R.; Bersani, E.; de Mattos, M.d.G.C.; Rodrigues, R.C.S.; Sartori, I.A.d.M.; Ribeiro, R.F. Fracture Resistance of the Implant-Abutment Connection in Implants with Internal Hex and Internal Conical Connections under Oblique Compressive Loading: An in Vitro Study. Int. J. Prosthodont. 2009, 22, 283–286. [Google Scholar]
- Davi, L.R.; Golin, A.L.; Bernardes, S.R.; de Araújo, C.A.; Neves, F.D. In Vitro Integrity of Implant External Hexagon after Application of Surgical Placement Torque Simulating Implant Locking. Braz. Oral Res. 2008, 22, 125–131. [Google Scholar] [CrossRef]
- Vigolo, P.; Fonzi, F.; Majzoub, Z.; Cordioli, G. Evaluation of Gold-Machined UCLA-Type Abutments and CAD/CAM Titanium Abutments with Hexagonal External Connection and with Internal Connection. Int. J. Oral Maxillofac. Implant. 2008, 23, 247–252. [Google Scholar]
- Chun, H.-J.; Shin, H.-S.; Han, C.-H.; Lee, S.-H. Influence of Implant Abutment Type on Stress Distribution in Bone under Various Loading Conditions Using Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2006, 21, 195–202. [Google Scholar]
- Pessoa, R.S.; Coelho, P.G.; Muraru, L.; Marcantonio, E.; Vaz, L.G.; Vander Sloten, J.; Jaecques, S.V.N. Influence of Implant Design on the Biomechanical Environment of Immediately Placed Implants: Computed Tomography-Based Nonlinear Three-Dimensional Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2011, 26, 1279–1287. [Google Scholar]
- Lemus Cruz, L.M.; Almagro Urrutia, Z.; Claudia León Castell, A. Origen y Evolucion de Los Implantes Dentales. Rev. Habanera Cienc. Médicas 2009, 8. [Google Scholar]
- Doş, A. Biomechanical Study of Prosthetic Interfaces: A Literature Review. Available online: https://www.semanticscholar.org/paper/Biomechanical-study-of-prosthetic-interfaces-%3A-A-Do%C5%9F/ec44f07a2b432f689ad1076a1772095c533024f8 (accessed on 16 February 2022).
- Gazzotti, P.D.; Endruhn, A. La Rehabilitacion Implanto-Protesica; Providence: Buenos Aires, Argentina, 2011. [Google Scholar]
- Baggi, L.; Cappelloni, I.; Di Girolamo, M.; Maceri, F.; Vairo, G. The Influence of Implant Diameter and Length on Stress Distribution of Osseointegrated Implants Related to Crestal Bone Geometry: A Three-Dimensional Finite Element Analysis. J. Prosthet. Dent. 2008, 100, 422–431. [Google Scholar] [CrossRef]
- Quaresma, S.E.T.; Cury, P.R.; Sendyk, W.R.; Sendyk, C. A Finite Element Analysis of Two Different Dental Implants: Stress Distribution in the Prosthesis, Abutment, Implant, and Supporting Bone. J. Oral Implantol. 2008, 34, 1–6. [Google Scholar] [CrossRef]
- Gardner, D.M. Platform Switching as a Means to Achieving Implant Esthetics. N. Y. State Dent. J. 2005, 71, 34–37. [Google Scholar]
- Mangano, C.; Bartolucci, E.G. Single Tooth Replacement by Morse Taper Connection Implants: A Retrospective Study of 80 Implants. Int. J. Oral Maxillofac. Implant. 2001, 16, 675–680. [Google Scholar]
- Gil, F.J.; Aparicio, C.; Manero, J.M.; Padros, A. Influence of the Height of the External Hexagon and Surface Treatment on Fatigue Life of Commercially Pure Titanium Dental Implants. Int. J. Oral Maxillofac. Implant. 2009, 24, 583–590. [Google Scholar]
- Shi, L.; Li, H.; Fok, A.S.L.; Ucer, C.; Devlin, H.; Horner, K. Shape Optimization of Dental Implants. Int. J. Oral Maxillofac. Implant. 2007, 22, 911–920. [Google Scholar]
- Abu-Hammad, O.A.; Harrison, A.; Williams, D. The Effect of a Hydroxyapatite-Reinforced Polyethylene Stress Distributor in a Dental Implant on Compressive Stress Levels in Surrounding Bone. Int. J. Oral Maxillofac. Implant. 2000, 15, 559–564. [Google Scholar]
- Sakoh, J.; Wahlmann, U.; Stender, E.; Nat, R.; Al-Nawas, B.; Wagner, W. Primary Stability of a Conical Implant and a Hybrid, Cylindric Screw-Type Implant in Vitro. Int. J. Oral Maxillofac. Implant. 2006, 21, 560–566. [Google Scholar]
- Mangano, C.; Mangano, F.; Piattelli, A.; Iezzi, G.; Mangano, A.; La Colla, L. Prospective Clinical Evaluation of 307 Single-Tooth Morse Taper-Connection Implants: A Multicenter Study. Int. J. Oral Maxillofac. Implant. 2010, 25, 394–400. [Google Scholar]
- Zambrano, M.E.A.; Reina, A.C.; Domínguez, G.C.; Fernández, D.A.G.; Fábrega, J.G. Biomecánica en implantología. Periodoncia Osteointegración 2005, 15, 311–326. [Google Scholar]
- Pessoa, R.S.; Muraru, L.; Júnior, E.M.; Vaz, L.G.; Sloten, J.V.; Duyck, J.; Jaecques, S.V.N. Influence of Implant Connection Type on the Biomechanical Environment of Immediately Placed Implants—CT-Based Nonlinear, Three-Dimensional Finite Element Analysis. Clin. Implant Dent. Relat. Res. 2009, 12, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-M.; Huang, H.-L.; Hsu, J.-T.; Fuh, L.-J. Influences of Internal Tapered Abutment Designs on Bone Stresses Around a Dental Implant: Three-Dimensional Finite Element Method With Statistical Evaluation. J. Periodontol. 2012, 83, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Karl, M.; Winter, W.; Taylor, T.D.; Heckmann, S.M. In Vitro Study on Passive Fit in Implant-Supported 5-Unit Fixed Partial Dentures. Int. J. Oral Maxillofac. Implant. 2004, 19, 30–37. [Google Scholar]
- McNeill, C. Fundamentos Cientif icos y Aplicaciones Prácticas de la Oclusión; Quintessence: Barcelona, Spain, 2005. [Google Scholar]
- Eskitascioglu, G.; Usumez, A.; Sevimay, M.; Soykan, E.; Unsal, E. The Influence of Occlusal Loading Location on Stresses Transferred to Implant-Supported Prostheses and Supporting Bone: A Three-Dimensional Finite Element Study. J. Prosthet. Dent. 2004, 91, 144–150. [Google Scholar] [CrossRef]
- Misch, C.E. Implantologia Contemporanea; Elservier: New York, NY, USA, 2009. [Google Scholar]
- Linck, G.K.S.B.; Ferreira, G.M.; De Oliveira, R.C.G.; Lindh, C.; Leles, C.R.; Ribeiro-Rotta, R.F. The Influence of Tactile Perception on Classification of Bone Tissue at Dental Implant Insertion. Clin. Implant Dent. Relat. Res. 2016, 18, 601–608. [Google Scholar] [CrossRef]
- Cícero Dinato, J.; Daudt Polido, W. Implantes Oseointegrados: Cirugía y Prótesis; Artes Médicas: Sao Paulo, Brasil, 2003. [Google Scholar]
- Beltrán, V.; Into, F.R.P.; Amos, G.d.G.R.; Iotti, D.; So, L.B. Switching Platform on Esthetic Area: Case Report. Dent. Press Implantol. 2012, 6, 93–103. [Google Scholar]
- Pellizzer, E.P.; Verri, F.R.; Falcón-Antenucci, R.M.; Júnior, J.F.S.; de Carvalho, P.S.P.; de Moraes, S.L.D.; Noritomi, P.Y. Stress Analysis in Platform-Switching Implants: A 3-Dimensional Finite Element Study. J. Oral Implantol. 2012, 38, 587–594. [Google Scholar] [CrossRef]
- Hong, H.R.; Pae, A.; Kim, Y.; Paek, J.; Kim, H.-S.; Kwon, K.-R. Effect of Implant Position, Angulation, and Attachment Height on Peri-Implant Bone Stress Associated with Mandibular Two-Implant Overdentures: A Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2012, 27, e69–e76. [Google Scholar]
- Huiskes, R.; Chao, E.Y. A Survey of Finite Element Analysis in Orthopedic Biomechanics: The First Decade. J. Biomech. 1983, 16, 385–409. [Google Scholar] [CrossRef]
- Hurtado, J.E.; Jorge, E. Análisis de elementos finitos estocásticos por estimaciones puntuales y expansión espectral. Rev. Int. Métod. Numér. Para Cálculo Diseño Ing. 2001, 17, 305–316. [Google Scholar]
- Siadat, H.; Najafi, H.; Alikhasi, M.; Falahi, B.; Beyabanaki, E.; Zayeri, F. Effect of Lateral Oblique Cyclic Loading on Microleakage and Screw Loosening of Implants with Different Connections. J. Dent. Res. Dent. Clin. Dent. Prospects 2018, 12, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; Cicciù, M.; D’Amico, C.; Mauceri, R.; Oteri, G.; Cervino, G. Finite Element Method and Von Mises Investigation on Bone Response to Dynamic Stress with a Novel Conical Dental Implant Connection. BioMed Res. Int. 2020, 2020, 2976067. [Google Scholar] [CrossRef] [PubMed]
- Prados-Privado, M.; Gehrke, S.A.; Rojo, R.; Prados-Frutos, J.C. Complete Mechanical Characterization of an External Hexagonal Implant Connection: In Vitro Study, 3D FEM, and Probabilistic Fatigue. Med. Biol. Eng. Comput. 2018, 56, 2233–2244. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-F.; Yao, K.-T.; Kao, H.-C.; Hsu, M.-L. Effects of Axial Loading on the Pull-out Force of Conical Connection Abutments in Ankylos Implant. Int. J. Oral Maxillofac. Implant. 2018, 33, 788–794. [Google Scholar] [CrossRef]
- Devaraju, K.; Rao, S.; Joseph, J.; Raju Kurapati, S. Comparison of Biomechanical Properties of Different Implant-Abutment Connections. Indian J. Dent. Sci. 2018, 10, 180. [Google Scholar] [CrossRef]
- Kanneganti, K.; Vinnakota, D.; Pottem, S.; Pulagam, M. Comparative Effect of Implant-Abutment Connections, Abutment Angulations, and Screw Lengths on Preloaded Abutment Screw Using Three-Dimensional Finite Element Analysis: An in Vitro Study. J. Indian Prosthodont. Soc. 2018, 18, 161. [Google Scholar] [CrossRef]
- Massoumi, F.; Taheri, M.; Mohammadi, A.; Amelirad, O. Evaluation of the Effect of Buccolingual and Apicocoronal Positions of Dental Implants on Stress and Strain in Alveolar Bone by Finite Element Analysis. J. Dent. Tehran Iran 2018, 15, 10–19. [Google Scholar]
- Lehmann, R.B.; Elias, C.N.; Zucareli, M.A. Influence of external geometry of Morse dental implant on stress distribution. Dent. Press Implantol. 2012, 6, 35–43. [Google Scholar]
- Krennmair, G.; Seemann, R.; Schmidinger, S.; Ewers, R.; Piehslinger, E. Clinical Outcome of Root-Shaped Dental Implants of Various Diameters: 5-Year Results. Int. J. Oral Maxillofac. Implant. 2010, 25, 357–366. [Google Scholar]
- Pereira, J.; Morsch, C.; Henriques, B.; Nascimento, R.; Benfatti, C.; Silva, F.; López-López, J.; Souza, J. Removal Torque and Biofilm Accumulation at Two Dental Implant–Abutment Joints After Fatigue. Int. J. Oral Maxillofac. Implant. 2016, 31, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Sütpideler, M.; Eckert, S.E.; Zobitz, M.; An, K.-N. Finite Element Analysis of Effect of Prosthesis Height, Angle of Force Application, and Implant Offset on Supporting Bone. Int. J. Oral Maxillofac. Implant. 2004, 19, 819–825. [Google Scholar]
- Kitamura, E.; Stegaroiu, R.; Nomura, S.; Miyakawa, O. Influence of Marginal Bone Resorption on Stress around an Implant—A Three-Dimensional Finite Element Analysis. J. Oral Rehabil. 2005, 32, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Magomedov, I.A.; Khaliev, M.S.-U.; Elmurzaev, A.A. Application of Finite Element Analysis in Medicine. J. Phys. Conf. Ser. 2020, 1679, 022057. [Google Scholar] [CrossRef]
- Yao, K.-T.; Chen, C.-S.; Cheng, C.-K.; Fang, H.-W.; Huang, C.-H.; Kao, H.-C.; Hsu, M.-L. Optimization of the Conical Angle Design in Conical Implant–Abutment Connections: A Pilot Study Based on the Finite Element Method. J. Oral Implantol. 2018, 44, 26–35. [Google Scholar] [CrossRef]
Material | Young’s Modul (MPa) | Poisson’s Ratio (v) | Reference(s) |
---|---|---|---|
Porcelain | 68,900 | 0.28 | De Carvalho Formiga et al. [9] |
Titanium Alloy (Ti–6Al–4V) | 110,000 | 0.35 | De Carvalho Formiga et al. [9]; Yao, K.-T. et al. [61] |
Cancellous Bone | 1370 | 0.30 | De Carvalho Formiga et al. [9]; Yao, K.-T. et al. |
Cortical Bone | 13,700 | 0.30 | Yao K-T et al. [61] |
Component | Crown | Abutment | ||||
---|---|---|---|---|---|---|
Forces | 150 N | 250 N | 350 N | 150 N | 250 N | 350 N |
EH | 173 | 288 | 404 | 255 | 375 | 525 |
IH | 48.9 | 81.5 | 114 | 58.2 | 97 | 136 |
MT | 40.7 | 67.8 | 95 | 94 | 157 | 219 |
CC | 18.7 | 31.1 | 43.5 | 4.3 | 7.17 | 10 |
CT | 18.7 | 31.1 | 43.5 | 4.3 | 7.21 | 10.1 |
Component | Implant | Bone | ||||
Forces | 150 N | 250 N | 350 N | 150 N | 250 N | 350 N |
EH | 75 | 125 | 175 | 75.1 | 125 | 175 |
IH | 11.9 | 19.8 | 27.8 | 0.26 | 0.44 | 0.617 |
MT | 1.54 | 2.56 | 3.59 | 0.002 | 0.003 | 0.0053 |
CC | 0.19 | 0.33 | 0.465 | 0.41 | 0.68 | 0.964 |
CT | 0.63 | 1.06 | 1.49 | 0.3 | 0.5 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angeles Maslucan, R.; Dominguez, J.A. A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal. Materials 2022, 15, 3680. https://doi.org/10.3390/ma15103680
Angeles Maslucan R, Dominguez JA. A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal. Materials. 2022; 15(10):3680. https://doi.org/10.3390/ma15103680
Chicago/Turabian StyleAngeles Maslucan, Romy, and John Alexis Dominguez. 2022. "A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal" Materials 15, no. 10: 3680. https://doi.org/10.3390/ma15103680
APA StyleAngeles Maslucan, R., & Dominguez, J. A. (2022). A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal. Materials, 15(10), 3680. https://doi.org/10.3390/ma15103680