Nanoceramic Composites for Nuclear Radiation Attenuation
Abstract
:1. Introduction
2. Experimental Approach
2.1. Materials and Methods
2.2. Synthesis of Lead Oxide (PbO) Nanoparticles
2.3. Preparation of Specimens
2.4. Experimental Set-Up
3. Results and Discussions
3.1. Three-Point Bending Test
3.2. Compression Test
3.3. Gamma Attenuation
3.4. SEM and EDAX Analysis
4. Simulation and Modeling
4.1. Simulation Method
4.2. Simulation Process
4.2.1. Material Properties
4.2.2. Geometry
4.2.3. Contact Generation
4.2.4. Mesh Generation
4.2.5. Loads and Boundary Conditions
4.2.6. Results and Interpretation
4.2.7. Comparative Study with Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abu Al Roos, N.J.; Amin, N.A.B.; Zainon, R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar] [CrossRef]
- Oto, B.; Yıldız, N.; Akdemir, F.; Kavaz, E. Investigation of gamma radiation shielding properties of variousores. Prog. Nucl. Energy 2015, 85, 391–403. [Google Scholar] [CrossRef]
- Luković, J.; Babić, B.; Bučevac, D.; Prekajski, M.; Pantić, J.; Baščarević, Z.; Matović, B. Synthesis and characterization of tungsten carbide fine powders. Ceram. Int. 2015, 41, 1271–1277. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Y.; Liu, Y.; Fang, J.; Luan, W.; Yang, X.; Zhang, W. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 356, 88–93. [Google Scholar] [CrossRef]
- Issard, H. Radiation protection by shielding in packages for radioactive materials. In Safe and Secure Transport and Storage of Radioactive Materials; Woodhead Publishing, Elsevier Ltd.: Sawston, UK, 2015; pp. 123–140. [Google Scholar]
- Mahmoud, Z.; Hannora, A.; Sherif, M.M. Preparation of Lead-Polymer Nano composite For Nuclear Shielding Applications. Int. J. Res. Appl. Sci. Eng. Technol. 2015, 3, 2321–9653. [Google Scholar]
- Nambiar, S.; Yeow, J.T.W. Polymer-Composite Materials for Radiation Protection. ACS Appl. Mater. Interfaces 2012, 4, 5717–5726. [Google Scholar] [CrossRef]
- Kim, J.; Seo, D.; Lee, B.C.; Seo, Y.S.; Miller, W.H. Nano-W Dispersed Gamma Radiation Shielding Materials. Adv. Eng. Mater. 2014, 16, 1083–1089. [Google Scholar] [CrossRef]
- Gözdeİrima, Ş.; Wis, A.A.; Keskin, M.A.; Baykara, O.; Ozkoc, G.; Avcı, A.; Doğru, M.; Karakoç, M. Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites. Radiat. Phys. Chem. 2018, 144, 434–443. [Google Scholar]
- Mortazavi, S.M.J.; Kardan, M.; Sina, S.; Baharvand, H.; Sharafi, N. Design and fabrication of high density borated polyethylene Nano composites as a Neutron shield. Int. J. Radiat. Res. 2016, 14, 379–383. [Google Scholar]
- Kim, J.; Lee, B.C.; Uhm, Y.R.; Miller, W.H. Enhancement of thermal neutron attenuation of nano-B4C,-BN dispersed neutron shielding polymer nanocomposites. J. Nucl. Mater. 2014, 453, 48–53. [Google Scholar] [CrossRef]
- Saidova, Z.; Yakovlev, G.; Smirnova, O.; Gordina, A.; Kuzmina, N. Modification of Cement Matrix with Complex Additive Based on Chrysotyl Nanofibers and Carbon Black. Appl. Sci. 2021, 11, 6943. [Google Scholar] [CrossRef]
- Hallad, S.A.; Banapurmath, N.R.; Hunashyal, A.M.; Shettar, A.S. Study of the effect of nanocomposite thin film coating on cutting tool tip for tribological applications. Mater. Today Proc. 2020, 27, 37–39. [Google Scholar] [CrossRef]
- Zivica, V. Hardening and properties of cement-based materials incorporating heavy metal oxides. Bull. Mater. Sci. 1997, 20, 677–683. [Google Scholar] [CrossRef]
- Alshahri, S.; Alsuhybani, M.; Alosime, E.; Almurayshid, M.; Alrwais, A.; Alotaibi, S. LDPE/Bismuth Oxide Nanocomposite: Preparation, Characterization and Application in X-ray Shielding. Polymers 2021, 13, 3081. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Xue, X.; Yang, H.; Li, Z. Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties. Radiat. Phys. Chem. 2017, 141, 239–244. [Google Scholar] [CrossRef]
- Kiani, M.A.; Ahmadi, S.J.; Outokesh, M.; Adeli, R.; Mohammadi, A. Preparation and characteristics of epoxy/clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application. Radiat. Phys. Chem. 2017, 141, 223–228. [Google Scholar] [CrossRef]
- Issa, S.A.M.; Mostafa, A.M.A. Effect of Bi2O3 in borate-tellurite-silicate glass system for development of gamma-rays shielding materials. J. Alloys Compd. 2017, 695, 302–310. [Google Scholar] [CrossRef]
- Shamshad, L.; Rooh, G.; Limkitjaroenporn, P.; Srisittipokakun, N.; Chaiphaksa, W.; Kim, H.J.; Kaewkhao, J. A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Prog. Nucl. Energy 2017, 97, 53–59. [Google Scholar] [CrossRef]
- Chai, H.; Tang, X.; Ni, M.; Chen, F.; Zhang, Y.; Chen, D.; Qiu, Y. Preparation and properties of novel, flexible, lead-free X-ray-shielding materials containing tungsten and bismuth(III) oxide. Appl. Polym. Sci. 2016, 133, 43012-19. [Google Scholar] [CrossRef]
- Ruengsri, S.; Insiripong, S.; Sangwaranatee, N.; Kaewkhao, J. Development of barium borosilicate glasses for radiation shielding materials using rice husk ash as a silica source. Prog. Nucl. Energy 2015, 83, 99–104. [Google Scholar] [CrossRef]
- Sharmaa, A.; Reddy, G.R.; Varshney, L.; Bharathkumar, H.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.; Krishnamoorthy, T.S. Experimental investigations on mechanical and radiation shielding properties of hybrid lead–steel fiber reinforced concrete. Nucl. Eng. Des. 2009, 239, 1180–1185. [Google Scholar] [CrossRef]
- Totla, S.K.; Pillai, A.M.; Chetan, M.; Warad, C.; Patil, A.Y.; Kotturshettar, B.B. Analysis of Helmet with Coconut Shell as the Outer Layer, Elsevier. Mater. Today Proc. 2020, 32, 365–373. [Google Scholar] [CrossRef]
- Hallad, S.A.; Banapurmath, N.R.; Patil, V.; Ajarekar, V.S.; Patil, A.Y.; Godi, M.T.; Shettar, A.S. Graphene Reinforced Natural Fiber Nanocomposites for Structural Applications. In Proceedings of the International Conference on Advances in Manufacturing, Materials and Energy Engineering (ICon MMEE 2018), Moodbidri, India, 2–3 March 2018. [Google Scholar] [CrossRef]
- Hallad, S.A.; Banapurmath, N.R.; Patil, A.Y.; Hunashyal, A.M.; Shettar, A.S. Experimental and Numerical Validation on the Utilization of Polymer Based Nanocomposites for Structural Applications Using FEA Software Tool, Material Focus; American Scientific Publishers: Valencia, CA, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
Parameters | Properties |
---|---|
Melting point | 888 °C |
Purity | 99.9% |
Molecular weight | 223.2 g/mol |
Density | 9.53 g/cm3 |
Atomic number | 82 |
Appearance | Red or yellow crystalline |
Morphology | Solid spherical |
Particle size | 20–30 nm |
Sample No | Specimen Reference | Constituents | Dimensions | % of Pb2O3 |
---|---|---|---|---|
1 | S1 | Plain cement+ Pb2O3 | 20 mm × 20 mm × 80 mm | 0.7 |
2 | S2 | 0.8 | ||
3 | S3 | 0.9 | ||
4 | S4 | 0.95 | ||
5 | S5 | 1 | ||
6 | PC | Nil |
Sl. No. | Baseline Data Generation (without Specimen) | Attenuated Reading in mm | Reading in mm |
---|---|---|---|
1 | 13.85 | 10.71 (S3) | 2.2671 |
2 | 13.84 | 8.172 (S4) | 4.0953 |
3 | 13.84 | 6.189 (S5) | 5.5281 |
Element | Weight (%) | Atomic (%) | Error (%) |
---|---|---|---|
C K | 2.67 | 5.60 | 18.75 |
O K | 32.35 | 50.98 | 11.53 |
Mg K | 0.78 | 0.81 | 16.43 |
Al K | 3.06 | 2.86 | 8.69 |
Si K | 10.17 | 9.13 | 5.32 |
S K | 0.81 | 0.63 | 13.80 |
Pb M | 1.77 | 0.22 | 13.86 |
Ca K | 44.49 | 27.99 | 2.23 |
Fe K | 3.90 | 1.76 | 9.27 |
Element | Weight (%) | Atomic (%) | Error (%) |
---|---|---|---|
C K | 3.23 | 6.25 | 14.81 |
O K | 40.77 | 59.27 | 10.76 |
Mg K | 0.67 | 0.64 | 15.51 |
Al K | 3.62 | 3.12 | 7.25 |
Si K | 7.26 | 6.01 | 5.31 |
S K | 0.58 | 0.42 | 13.77 |
Pb M | 1.50 | 0.17 | 12.43 |
Ca K | 39.51 | 22.93 | 1.98 |
Fe K | 2.86 | 1.19 | 9.05 |
Sl. No | Material | Young’s Modulus | Poisson’s Ratio (MPa) | Density (kg/m3) |
---|---|---|---|---|
1 | Concrete | 30 × 103 | 0.18 | 2300 |
2 | Lead Oxide | 16 × 103 | 0.38 | 9530 |
Description | Experimental Method | Simulation Method | % of Error |
---|---|---|---|
Total deformation | 20.01 | 21.11 | 5.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallad, S.A.; Banapurmath, N.R.; Bhadrakali, A.S.; Patil, A.Y.; Hunashyal, A.M.; Ganachari, S.V.; Khan, T.M.Y.; Badruddin, I.A.; Soudagar, M.E.M.; Kamangar, S. Nanoceramic Composites for Nuclear Radiation Attenuation. Materials 2022, 15, 262. https://doi.org/10.3390/ma15010262
Hallad SA, Banapurmath NR, Bhadrakali AS, Patil AY, Hunashyal AM, Ganachari SV, Khan TMY, Badruddin IA, Soudagar MEM, Kamangar S. Nanoceramic Composites for Nuclear Radiation Attenuation. Materials. 2022; 15(1):262. https://doi.org/10.3390/ma15010262
Chicago/Turabian StyleHallad, Shankar A., Nagaraj R. Banapurmath, Avinash S. Bhadrakali, Arun Y. Patil, Anand M. Hunashyal, Sharanabasava V. Ganachari, T. M. Yunus Khan, Irfan Anjum Badruddin, Manzoore Elahi M. Soudagar, and Sarfaraz Kamangar. 2022. "Nanoceramic Composites for Nuclear Radiation Attenuation" Materials 15, no. 1: 262. https://doi.org/10.3390/ma15010262
APA StyleHallad, S. A., Banapurmath, N. R., Bhadrakali, A. S., Patil, A. Y., Hunashyal, A. M., Ganachari, S. V., Khan, T. M. Y., Badruddin, I. A., Soudagar, M. E. M., & Kamangar, S. (2022). Nanoceramic Composites for Nuclear Radiation Attenuation. Materials, 15(1), 262. https://doi.org/10.3390/ma15010262