Dual Thermo- and Photo-Responsive Micelles Based on Azobenzene-Containing Random Copolymer
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Synthesis of PMAAAB-ran-P(THP-HEA)
2.3. Synthesis of PMAAAB-ran-PHEA
2.4. Preparation of PMAAAB-ran-PHEA Micelles
2.5. Encapsulation of Nile Red
2.6. Characterization
3. Results and Discussion
3.1. Synthesis of PMAAAB-ran-P(THP-HEA)
3.2. Synthesis of PMAAAB-ran-PHEA
3.3. Preparation of PMAAAB-ran-PHEA Micelles
3.4. Thermo-Responsive Behavior of Micelles
3.5. Encapsulation of Nile Red and Its Photo- and Thermo-Induced Release
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Qiu, N.; Du, X.; Ji, J.; Zhai, G. A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin. Drug Dev. Ind. Pharm. 2021, 47, 839–856. [Google Scholar] [CrossRef]
- Wang, S.-W.; Lin, Y.-K.; Fang, J.-Y.; Lee, R.-S. Photo-responsive polymeric micelles and prodrugs: Synthesis and characterization. RSC Adv. 2018, 8, 29321–29337. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, J.P.; Khan, A.; Pasparakis, G.; Saeed, A.O.; Wang, W.; Alexander, C. Ion-Sensitive “Isothermal” Responsive Polymers Prepared in Water. J. Am. Chem. Soc. 2008, 130, 10852–10853. [Google Scholar] [CrossRef]
- Wang, L.; Cao, W.; Yi, Y.; Xu, H. Dual Redox Responsive Coassemblies of Diselenide-Containing Block Copolymers and Polymer Lipids. Langmuir 2014, 30, 5628–5636. [Google Scholar] [CrossRef] [PubMed]
- Teo, J.Y.; Chin, W.; Ke, X.; Gao, S.; Liu, S.; Cheng, W.; Hedrick, J.L.; Yang, Y.Y. pH and redox dual-responsive biodegradable polymeric micelles with high drug loading for effective anticancer drug delivery. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Jiang, T.; Chen, H.; Li, L.; Liu, Y.; Zhou, H.; Feng, Y.; Zhou, J. Preparation of multi-responsive micelles for controlled release of insulin. Colloid Polym. Sci. 2015, 293, 209–215. [Google Scholar] [CrossRef]
- Xiao, W.; Zeng, X.; Lin, H.; Han, K.; Jia, H.-Z.; Zhang, X.-Z. Dual stimuli-responsive multi-drug delivery system for the individually controlled release of anti-cancer drugs. Chem. Commun. 2015, 51, 1475–1478. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Wang, S.-D.; Wang, F.; Sun, Y.; Dong, P.-H.; Liu, H.-Q.; Cao, K.-Z. A dual-responsive Ni (II) coordination polymer fluorescent sensor: Rare turn-on detection of ascorbic acid and turn-off sensing acetylacetone. J. Solid State Chem. 2021, 304, 122561. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, J.; Yang, H.; Lei, Z. Synthesis of Photo, Oxidation, Reduction Triple-Stimuli-Responsive Interface-Cross-Linked Polymer Micelles as Nanocarriers for Controlled Release. Macromol. Chem. Phys. 2021, 222, 2000365. [Google Scholar] [CrossRef]
- Yan, Z.; Zhao, A.; Liu, X.; Ren, J.; Qu, X. A pH-switched mesoporous nanoreactor for synergetic therapy. Nano Res. 2017, 10, 1651–1661. [Google Scholar] [CrossRef]
- Tao, Z.; Peng, K.; Fan, Y.; Liu, Y.; Yang, H. Multi-stimuli responsive supramolecular hydrogels based on Fe3+ and diblock copolymer micelle complexation. Polym. Chem. 2016, 7, 1405–1412. [Google Scholar] [CrossRef]
- Deane, O.J.; Jennings, J.; Neal, T.J.; Musa, O.M.; Fernyhough, A.; Armes, S.P. Synthesis and Aqueous Solution Properties of Shape-Shifting Stimulus-Responsive Diblock Copolymer Nano-Objects. Chem. Mater. 2021, 33, 7767–7779. [Google Scholar] [CrossRef]
- Song, F.; Wang, Z.; Gao, W.; Fu, Y.; Wu, Q.; Liu, S. Novel Temperature/Reduction Dual-Stimulus Responsive Triblock Copolymer [P(MEO2MA-co-OEGMA)-b-PLLA-SS-PLLA-b-P(MEO2MA-co-OEGMA)] via a Combination of ROP and ATRP: Synthesis, Characterization and Application of Self-Assembled Micelles. Polymers 2020, 12, 2482. [Google Scholar] [CrossRef]
- Fang, R.; Pi, J.; Wei, T.; Ali, A.; Guo, L. Stimulus-Responsive Polymers Based on Polypeptoid Skeletons. Polymers 2021, 13, 2089. [Google Scholar] [CrossRef]
- Liu, X.; Kim, J.S.; Wu, J.; Eisenberg, A. Bowl-Shaped Aggregates from the Self-Assembly of an Amphiphilic Random Copolymer of Poly (styrene-co-methacrylic acid). Macromolecules 2005, 38, 6749–6751. [Google Scholar] [CrossRef]
- Laskar, P.; Saha, B.; Ghosh, S.K.; Dey, J. PEG based random copolymer micelles as drug carriers: The effect of hydrophobe content on drug solubilization and cytotoxicity. RSC Adv. 2015, 5, 16265–16276. [Google Scholar] [CrossRef]
- Imai, S.; Hirai, Y.; Nagao, C.; Sawamoto, M.; Terashima, T. Programmed Self-Assembly Systems of Amphiphilic Random Copolymers into Size-Controlled and Thermoresponsive Micelles in Water. Macromolecules 2018, 51, 398–409. [Google Scholar] [CrossRef]
- Li, Y.; Deng, Y.; Tong, X.; Wang, X. Formation of Photoresponsive Uniform Colloidal Spheres from an Amphiphilic Azobenzene-Containing Random Copolymer. Macromolecules 2006, 39, 1108–1115. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Y.; Wang, X. Colloidal Sphere Formation, H-Aggregation, and Photoresponsive Properties of an Amphiphilic Random Copolymer Bearing Branched Azo Side Chains. Macromolecules 2006, 39, 6590–6598. [Google Scholar] [CrossRef]
- Geng, S.; Wang, Y.; Wang, L.; Kouyama, T.; Gotoh, T.; Wada, S.; Wang, J.-Y. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System. Sci. Rep. 2017, 7, 39202. [Google Scholar] [CrossRef] [PubMed]
- Pearson, S.; Vitucci, D.; Khine, Y.Y.; Dag, A.; Lu, H.; Save, M.; Billon, L.; Stenzel, M.H. Light-responsive azobenzene-based glycopolymer micelles for targeted drug delivery to melanoma cells. Eur. Polym. J. 2015, 69, 616–627. [Google Scholar] [CrossRef]
- Feng, Z.; Lin, L.; Yan, Z.; Yu, Y. Dual Responsive Block Copolymer Micelles Functionalized by NIPAM and Azobenzene. Macromol. Rapid Commun. 2010, 31, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Blasco, E.; Schmidt, B.V.K.J.; Barner-Kowollik, C.; Piñol, M.; Oriol, L. Dual thermo- and photo-responsive micelles based on miktoarm star polymers. Polym. Chem. 2013, 4, 4506–4514. [Google Scholar] [CrossRef]
- Dong, J.; Wang, Y.; Zhang, J.; Zhan, X.; Zhu, S.; Yang, H.; Wang, G. Multiple stimuli-responsive polymeric micelles for controlled release. Soft Matter 2013, 9, 370–373. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Zhao, Z.; He, L. Synthesis and characterization of photoresponsive Poly (acrylamido-azobenzene). J. Guangxi Univ. (Nat. Sci. Eds.) 2010, 35, 444–450. [Google Scholar]
- Chang, C.; Pugh, C. Synthesis and Miscibility of Comb Poly [11-(4′-cyanophenyl-4″-phenoxy) undecyl acrylate]s Prepared by ATRP. Macromolecules 2001, 34, 2027–2039. [Google Scholar] [CrossRef]
- Jiang, W.; Guo, J.; Wen, W.; Jia, Y.-G.; Liu, S. Nano-carriers based on pH-sensitive star-shaped copolymers for drug-controlled release. Materials 2019, 12, 1610. [Google Scholar] [CrossRef] [Green Version]
- Jana, S.; Bose, A.; Saha, A.; Mandal, T.K. Photocleavable and tunable thermoresponsive amphiphilic random copolymer: Self-assembly into micelles, dye encapsulation, and triggered release. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1714–1729. [Google Scholar] [CrossRef]
- Tong, X.; Wang, G.; Soldera, A.; Zhao, Y. How Can Azobenzene Block Copolymer Vesicles Be Dissociated and Reformed by Light? J. Phys. Chem. B 2005, 109, 20281–20287. [Google Scholar] [CrossRef]
- Goodwin, A.P.; Mynar, J.L.; Ma, Y.; Fleming, G.R.; Fréchet, J.M.J. Synthetic Micelle Sensitive to IR Light via a Two-Photon Process. J. Am. Chem. Soc. 2005, 127, 9952–9953. [Google Scholar] [CrossRef] [PubMed]
Mole Ratio of Monomers | MAAAB/mmol | THP-HEA/mmol | Mass of Copolymer/g | Conversion/% | FMAAAB | n | w/n |
---|---|---|---|---|---|---|---|
2:8 | 10.0 | 40.0 | 1.00 | 9.38 | 0.2235 | 6240 | 1.50 |
3:7 | 15.0 | 35.0 | 0.90 | 8.19 | 0.3459 | 6690 | 1.40 |
5:5 | 25.0 | 25.0 | 1.10 | 9.45 | 0.5351 | 11,990 | 1.50 |
7:3 | 35.0 | 15.0 | 0.80 | 6.51 | 0.6845 | 10,570 | 1.60 |
8:2 | 40.0 | 10.0 | 0.40 | 3.17 | 0.7452 | 6870 | 1.40 |
Micelles Samples | nMAAAB:nHEA | FMAAAB | n | Rh/nm |
---|---|---|---|---|
S1 | 2:8 | 0.2235 | 6240 | 135.7 |
S2 | 3:7 | 0.3459 | 6690 | 139.0 |
S3 | 5:5 | 0.5351 | 11,990 | 149.3 |
S4 | 7:3 | 0.6845 | 10,570 | 144.3 |
S5 | 8:2 | 0.7452 | 6870 | 141.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Yang, L.; Mo, X.; Chen, K.; Niu, W.; Zhao, Z.; Li, G. Dual Thermo- and Photo-Responsive Micelles Based on Azobenzene-Containing Random Copolymer. Materials 2022, 15, 2. https://doi.org/10.3390/ma15010002
Yan C, Yang L, Mo X, Chen K, Niu W, Zhao Z, Li G. Dual Thermo- and Photo-Responsive Micelles Based on Azobenzene-Containing Random Copolymer. Materials. 2022; 15(1):2. https://doi.org/10.3390/ma15010002
Chicago/Turabian StyleYan, Chuan, Liqin Yang, Xiangquan Mo, Keying Chen, Weiya Niu, Zhiju Zhao, and Guanghua Li. 2022. "Dual Thermo- and Photo-Responsive Micelles Based on Azobenzene-Containing Random Copolymer" Materials 15, no. 1: 2. https://doi.org/10.3390/ma15010002
APA StyleYan, C., Yang, L., Mo, X., Chen, K., Niu, W., Zhao, Z., & Li, G. (2022). Dual Thermo- and Photo-Responsive Micelles Based on Azobenzene-Containing Random Copolymer. Materials, 15(1), 2. https://doi.org/10.3390/ma15010002