Preparation and Characterization of Thermoelectric PEDOT/Te Nanorod Array Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Galvanic Displacement Reaction (GDR)
2.3. Synthesis of PEDOT/Te Composite Film
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hossain, S.N.; Bari, S. Waste Heat Recovery From Exhaust of a Diesel Generator Set Using Organic Fluids. Procedia Eng. 2014, 90, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Lu, Y.; Qiu, Y.; Cai, K.; Ding, Y.; Wang, M.; Jiang, C.; Yao, Q.; Huang, C.; Chen, L.; He, J. Ultrahigh Power Factor and Flexible Silver Selenide-Based Composite Film for Thermoelectric Devices. Energy Environ. Sci. 2020, 13, 1240–1249. [Google Scholar] [CrossRef]
- He, M.; Qiu, F.; Lin, Z. Towards High-Performance Polymer-Based Thermoelectric Materials. Energy Environ. Sci. 2013, 6, 1352–1361. [Google Scholar] [CrossRef]
- Wang, Y. Research Progress on a Novel Conductive Polymer–Poly(3,4-Ethylenedioxythiophene) (PEDOT). J. Phys. Conf. Ser. 2009, 152, 012023. [Google Scholar] [CrossRef]
- Poehler, T.O.; Katz, H.E. Prospects for Polymer-Based Thermoelectrics: State of the Art and Theoretical Analysis. Energy Environ. Sci. 2012, 5, 8110–8115. [Google Scholar] [CrossRef]
- Lin, S.; Li, W.; Chen, Z.; Shen, J.; Ge, B.; Pei, Y. Tellurium as a High-performance Elemental Thermoelectric. Nat. Commun. 2016, 7, 10287. [Google Scholar] [CrossRef]
- Song, L.; Zhang, J.; Iversen, B.B. Enhanced Thermoelectric Properties of SnSe Thin Films grown by Single-target Magnetron Sputtering. J. Mater. Chem. A 2019, 7, 17981–17986. [Google Scholar] [CrossRef]
- Bao, D.; Chen, J.; Yu, Y.; Liu, W.; Huang, L.; Han, G.; Tang, J.; Zhou, D.; Yang, L.; Chen, Z.-G. Texture-dependent Thermoelectric Properties of Nano-structured Bi2Te3. Chem. Eng. J. 2020, 388, 124295. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, W.; Liu, F.; Yang, S.; Wang, Z. Thickness Effects for Thermoelectric Property of Antimony Telluride Nanoplatelets via Solvothermal Method. Sci. Rep. 2016, 6, 37722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Ge, J.; Lin, Z.; Feng, X.; Wang, X.; Lu, H.; Yang, Y.; Qiu, F. Thermopower Enhancement in Conducting Polymer Nanocomposites via Carrier Energy Scattering at the Organic–Inorganic Semiconductor Interface. Energy Environ. Sci. 2012, 5, 8351–8358. [Google Scholar] [CrossRef]
- Ni, D.; Song, H.; Chen, Y.; Cai, K. Significantly Enhanced Thermoelectric Performance of Flexible PEDOT Nanowire Film via Coating Te Nanostructures. J. Materiomics 2020, 6, 364–370. [Google Scholar] [CrossRef]
- Song, H.; Cai, K. Preparation and Properties of PEDOT:PSS/Te Nanorod Composite Films for Flexible Thermoelectric Power Generator. Energy 2017, 125, 519–525. [Google Scholar] [CrossRef]
- Meng, Q.; Jiang, Q.; Cai, K.; Chen, L. Preparation and Thermoelectric Properties of PEDOT:PSS-Coated Te Nanorod/PEDOT:PSS Composite Films. Org. Electron. 2019, 64, 79–85. [Google Scholar] [CrossRef]
- Karalis, G.; Tzounis, L.; Mytafides, C.K.; Tsirka, K.; Formanek, P.; Stylianakis, M.; Kymakis, E.; Paipetis, A.S. A High Performance Flexible and Robust Printed Thermoelectric Generator Based on Hybridized Te Nanowires With PEDOT:PSS. Appl. Energy 2021, 294, 117004. [Google Scholar] [CrossRef]
- Jeong, D.-B.; Lim, J.-H.; Lee, J.; Park, H.; Zhang, M.; Lee, Y.-I.; Choa, Y.-H.; Myung, N.V. Template-Free Synthesis of Vertically Oriented Tellurium Nanowires via a Galvanic Displacement Reaction. Electrochim. Acta 2013, 111, 200–205. [Google Scholar] [CrossRef]
- Lim, J.H.; Shin, G.J.; Hwang, T.Y.; Lim, H.R.; Lee, Y.I.; Lee, K.H.; Kim, S.D.; Oh, M.W.; Park, S.D.; Myung, N.V.; et al. Three-Dimensional Hierarchical Te-Si Nanostructures. Nanoscale 2014, 6, 11697–11702. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Kim, J. Transparent and Hybrid Multilayer Films with Improved Thermoelectric Performance by Chalcogenide-Interlayer-Induced Transport Enhancement. A.C.S. Appl. Mater. Interfaces 2019, 11, 35354–35361. [Google Scholar] [CrossRef]
- Ju, H.; Park, D.; Kim, J. Thermoelectric Enhancement in Multilayer Thin-Films of Tin Chalcogenide Nanosheets/Conductive Polymers. Nanoscale 2019, 11, 16114–16121. [Google Scholar] [CrossRef]
- Liang, Y.; Xiong, Y.; Zheng, J.; Xie, Z.; Chen, C.; Xu, L. Study of Thermoelectric Properties in the PEDOT:PSS/Te Double-Layer Thin Film Devices. Compos. Commun. 2021, 27, 100888. [Google Scholar] [CrossRef]
- Culebras, M.; Gómez, C.M.; Cantarero, A. Enhanced Thermoelectric Performance of PEDOT With Different Counter-Ions Optimized by Chemical Reduction. J. Mater. Chem. A 2014, 2, 10109–10115. [Google Scholar] [CrossRef]
- Kim, S.; Lee, Y.-I.; Kim, D.-H.; Lee, K.-J.; Kim, B.-S.; Hussain, M.; Choa, Y.-H. Estimation of Dispersion Stability of UV/Ozone Treated Multi-Walled Carbon Nanotubes and Their Electrical Properties. Carbon 2013, 51, 346–354. [Google Scholar] [CrossRef]
- Lee, Y.-I.; Kim, S.; Lee, K.-J.; Myung, N.V.; Choa, Y.-H. Inkjet Printed Transparent Conductive Films Using Water-Dispersible Single-Walled Carbon Nanotubes Treated by UV/Ozone Irradiation. Thin Solid Film. 2013, 536, 160–165. [Google Scholar] [CrossRef]
- Hwang, T.-Y.; Song, Y.; Kim, S.; Lee, J.; Eom, N.S.A.; Kwon, Y.-T.; Ryu, S.H.; Park, Y.-K.; Cho, H.-B.; Choa, Y.-H. Rice-Like Tellurium Thin Films Deposited by a Galvanic Displacement Reaction and Ultra-High Sensing Response to Hydrogen Sulfide (H2S) Gas at Room Temperature. Sens. Actuators B 2019, 282, 756–764. [Google Scholar] [CrossRef]
- Elazem, D.; Jung, H.; Wu, T.; Lim, J.-H.; Lee, K.-H.; Myung, N.V. Morphology Change of Galvanically Displaced One-Dimensional Tellurium Nanostructures via Controlling the Microstructure of Sacrificial Ni Thin Films. Electrochim. Acta 2013, 106, 447–452. [Google Scholar] [CrossRef]
- Hyung, J.-H.; Kim, G.-S.; Rai, A.K.; Jang, C.-O.; Lee, C.-Y.; Khurelbaatar, Z.; Acharya, S.K.; Lee, S.-K. Dependence of the Morphology Evolution and Crystal Orientation of Tellurium (Te) Micro- and Nanostructures on the Growth Temperature. J. Korean Phys. Soc. 2012, 60, 47–50. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, R.; Kumar, S.; Chakarvarti, S.K. Optical and Electrical Studies of Vertically Oriented Tellurium Nanowire Arrays Produced by Template Electrodeposition. J. Electron. Mater. 2015, 44, 2939–2945. [Google Scholar] [CrossRef]
- Kahaly, M.U.; Ghosh, P.; Narasimhan, S.; Waghmare, U.V. Size Dependence of Structural, Electronic, Elastic, and Optical Properties of Selenium Nanowires: A First-Principles Study. J. Chem. Phys. 2008, 128, 044718. [Google Scholar] [CrossRef]
- Kim, T.Y.; Park, C.M.; Kim, J.E.; Suh, K.S. Electronic, Chemical and Structural Change Induced by Organic Solvents in Tosylate-Doped Poly(3,4-Ethylenedioxythiophene) (PEDOT-OTs). Synth. Met. 2005, 149, 169–174. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, C.; Manzano, C.V.; Romero, A.H.; Martín, J.; Martín-González, M.; Morais de Lima, M., Jr.; Cantarero, A. The Fingerprint of Te-Rich and Stoichiometric Bi2Te3 Nanowires by Raman Spectroscopy. Nanotechnology 2016, 27, 075706. [Google Scholar] [CrossRef]
- Roy, A.; Amin, K.R.; Tripathi, S.; Biswas, S.; Singh, A.K.; Bid, A.; Ravishankar, N. Manipulation of Optoelectronic Properties and Band Structure Engineering of Ultrathin Te Nanowires by Chemical Adsorption. ACS Appl. Mater. Interfaces 2017, 9, 19462–19469. [Google Scholar] [CrossRef]
- Zhang, H.; Swihart, M.T. Synthesis of Tellurium Dioxide Nanoparticles by Spray Pyrolysis. Chem. Mater. 2007, 19, 1290–1301. [Google Scholar] [CrossRef]
- Park, H.; Son, W.; Lee, S.H.; Kim, S.; Lee, J.J.; Cho, W.; Choi, H.H.; Kim, J.H. Aqueous Chemical Synthesis of Tellurium Nanowires Using a Polymeric Template for Thermoelectric Materials. CrystEngComm 2015, 17, 1092–1097. [Google Scholar] [CrossRef]
- Culebras, M.; Uriol, B.; Gómez, C.M.; Cantarero, A. Controlling the Thermoelectric Properties of Polymers: Application to PEDOT and Polypyrrole. Phys. Chem. Chem. Phys. 2015, 17, 15140–15145. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.; Liu, C.; Fan, S. A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks. Adv. Mater. 2010, 22, 535–539. [Google Scholar] [CrossRef]
- Yee, S.K.; Coates, N.E.; Majumdar, A.; Urban, J.J.; Segalman, R.A. Thermoelectric Power Factor Optimization in PEDOT:PSS Tellurium Nanowire Hybrid Composites. Phys. Chem. Chem. Phys. 2013, 15, 4024–4032. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, J.Y.; Lee, S.-S.; Park, C.R.; Kim, H. High-Performance Thermoelectric Paper Based on Double Carrier-Filtering Processes at Nanowire Heterojunctions. Adv. Energy Mater. 2016, 6, 1502181. [Google Scholar] [CrossRef]
- Zheng, Y.; Zeng, H.; Zhu, Q.; Xu, J. Recent Advances in Conducting Poly(3,4-Ethylenedioxythiophene):Polystyrene Sulfonate Hybrids for Thermoelectric Applications. J. Mater. Chem. C 2018, 6, 8858–8873. [Google Scholar] [CrossRef]
- Liang, Z.; Boland, M.J.; Butrouna, K.; Strachan, D.R.; Graham, K.R. Increased Power Factors of Organic–Inorganic Nanocomposite Thermoelectric Materials and the Role of Energy Filtering. J. Mater. Chem. A 2017, 5, 15891–15900. [Google Scholar] [CrossRef]
- Klein, A.; Körber, C.; Wachau, A.; Säuberlich, F.; Gassenbauer, Y.; Harvey, S.P.; Proffit, D.E.; Mason, T.O. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment. Materials 2010, 3, 4892–4914. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yao, Q.; Shi, W.; Qu, S.; Chen, L. Engineering Carrier Scattering at the Interfaces in Polyaniline Based Nanocomposites for High Thermoelectric Performances. Mater. Chem. Front. 2017, 1, 741–748. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Wu, Y.; Zeng, Z.; Hu, Z. Optimization of the Thermopower of Antimony Telluride Thin Film by Introducing Tellurium Nanoparticles. Appl. Phys. A 2015, 118, 1043–1051. [Google Scholar] [CrossRef]
- Choi, J.; Lee, K.; Park, C.R.; Kim, H. Enhanced Thermopower in Flexible Tellurium Nanowire Films Doped Using Single-Walled Carbon Nanotubes With a Rationally Designed Work Function. Carbon 2015, 94, 577–584. [Google Scholar] [CrossRef]
- Saghaei, J.; Brewer, A.M.; Jiang, W.; Russell, S.M.; Burn, P.L.; Pivrikas, A. Preserving the Work Function of Ultra-Violet-Ozone Treated Indium Tin Oxide by Triarylamine-Based Small Molecule Modification for Solution-Processed Organic Light-Emitting Diodes With Increased External Quantum Efficiency. Thin Solid Films 2021, 718, 138475. [Google Scholar] [CrossRef]
- Faleev, S.V.; Léonard, F. Theory of Enhancement of Thermoelectric Properties of Materials With Nanoinclusions. Phys. Rev. B 2008, 77, 214304. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, H.-J.; Kim, S.; Kim, K.H.; Lee, J.-Y. Preparation and Characterization of Thermoelectric PEDOT/Te Nanorod Array Composite Films. Materials 2022, 15, 148. https://doi.org/10.3390/ma15010148
Ahn H-J, Kim S, Kim KH, Lee J-Y. Preparation and Characterization of Thermoelectric PEDOT/Te Nanorod Array Composite Films. Materials. 2022; 15(1):148. https://doi.org/10.3390/ma15010148
Chicago/Turabian StyleAhn, Hong-Ju, Seil Kim, Kwang Ho Kim, and Joo-Yul Lee. 2022. "Preparation and Characterization of Thermoelectric PEDOT/Te Nanorod Array Composite Films" Materials 15, no. 1: 148. https://doi.org/10.3390/ma15010148
APA StyleAhn, H.-J., Kim, S., Kim, K. H., & Lee, J.-Y. (2022). Preparation and Characterization of Thermoelectric PEDOT/Te Nanorod Array Composite Films. Materials, 15(1), 148. https://doi.org/10.3390/ma15010148