Effect of Ultrasonic-Assisted Casting on Hot Deformation Mechanism and Microstructure of 35CrMo Steel Ingot
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Results and Discussions
3.1. Macrostructure and Microstructure Cast by Ultrasonic Assisting
3.2. Hot Deformation Behavior and Deformation Mechanism
3.2.1. The Stress–Strain Behavior
3.2.2. Deformation Activation Energy
3.2.3. Work Hardening Characteristics
3.3. Hot Deformation Microstructure
3.3.1. Microstructure Evolution
3.3.2. Coincidence Site Lattice Characteristics
3.3.3. Characterization of Dynamic Recrystallization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.M.; Zhou, Y.J.; Li, Z.; Mao, D.H. Effect of Hot Deformation Process Parameters on Microstructure and Corrosion Behavior of 35Crmov Steel. Materials 2019, 12, 1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.L.; Zhou, Y.J.; Shi, C.; Mao, D.H. Microscopic Analysis and Electrochemical Behavior of Fe-Based Coating Produced by Laser Cladding. Metals 2017, 7, 435. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhou, Y.J.; Wang, S.X. Influence of Strain and Stress Triaxiality on the Fracture Behavior of Gb 35Crmo Steel During Hot Tensile Testing. Adv. Mater. Sci. Eng. 2018, 2018, 5124524. [Google Scholar] [CrossRef] [Green Version]
- Li, H.B.; Chen, M.S.; Tian, Y.Q.; Chen, L.S.; Chen, L.Q. Ultra-Fine-Grained Ferrite Prepared from Dynamic Reversal Austenite During Warm Deformation. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumaresan, T.; Pandit, A.B.; Joshi, J.B. Characterization of Flow Phenomena Induced by Ultrasonic Horn. Chem. Eng. Sci. 2006, 61, 7410–7420. [Google Scholar] [CrossRef]
- Madelin, G.; Grucker, D.; Franconi, J.; Thiaudiere, E. Magnetic Resonance Imaging of Acoustic Streaming: Absorption Coefficient and Acoustic Field Shape Estimation. Ultrasonics 2006, 44, 272–278. [Google Scholar] [CrossRef]
- Zhang, X.P.; Kang, J.W.; Wang, S.; Ma, J.Y.; Huang, T.Y. The Effect of Ultrasonic Processing on Solidification Microstructure and Heat Transfer in Stainless Steel Melt. Ultrason. Sonochemistry 2015, 27, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Shi, C.; Zhou, Y.J.; Mao, D.H. Numerical Simulation and Experimental Study of an Ultrasonic Waveguide for Ultrasonic Casting of 35CrMo steel. J. Iron Steel Res. Int. 2016, 23, 772–777. [Google Scholar] [CrossRef]
- Shi, C.; Li, F.; Liang, G.; Mao, D.H. Effect of Ultrasonic Melt Treatment on Microstructure and Mechanical Properties of 35Crmo Steel Casting. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 108, p. 22061. [Google Scholar]
- Liu, X.B.; Osawa, Y.; Takamori, S.; Mukai, T. Microstructure and Mechanical Properties of Az91 Alloy Produced with Ultrasonic Vibration. Mater. Sci. Eng. A 2008, 487, 120–123. [Google Scholar] [CrossRef]
- Shi, C.; Shen, K. Twin-Roll Casting 8011 Aluminium Alloy Strips under Ultrasonic Energy Field. Int. J. Light. Mater. Manu. 2018, 1, 108–114. [Google Scholar] [CrossRef]
- Kotadia, H.R.; Das, A. Modification of Solidification Microstructure in Hypo- And Hyper-Eutectic Al–Si Alloys under High-Intensity Ultrasonic Irradiation. J. Alloys Compd. 2015, 620, 1–4. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, K.; Xue, X.Y.; Mao, D.H.; Li, J.P. Effects of Ultrasonic Treatment On the Tensile Properties and Microstructure of Twin Roll Casting Mg–3%Al–1%Zn–0.8%Ce–0.3%Mn (Wt%) Alloy Strips. J. Alloys Compd. 2011, 509, 8607–8613. [Google Scholar] [CrossRef]
- Han, Y.F.; Li, K.; Wang, J.; Shu, D.; Sun, B.B. Influence of High-Intensity Ultrasound On Grain Refining Performance of Al–5Ti–1B Master Alloy On Aluminium. Mater. Sci. Eng. A 2005, 405, 306–312. [Google Scholar] [CrossRef]
- Liu, Z.G.; Li, P.J.; Xiong, L.T.; Liu, T.Y.; He, L.J. High-Temperature Tensile Deformation Behavior and Microstructure Evolution of Ti55 Titanium Alloy. Mater. Sci. Eng. A 2017, 680, 259–269. [Google Scholar] [CrossRef]
- He, H.L.; Yi, Y.P.; Cui, J.D.; Huang, S.Q. Hot Deformation Characteristics and Processing Parameter Optimization of 2219 Al Alloy Using Constitutive Equation and Processing Map. Vacuum 2019, 160, 293–302. [Google Scholar] [CrossRef]
- Chen, X.M.; Lin, Y.C.; Wen, D.X.; Zhang, J.L.; He, M. Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation. Mater. Des. 2014, 57, 568–577. [Google Scholar] [CrossRef]
- Li, H.B.; Fan, L.F.; Chen, L.S.; Jia, L.Y. Effect of cooling mode on the microstructure and mechanical properties of medium carbon steel after warm rolling. Iron. Steel. 2019, 46, 1022–1028. [Google Scholar] [CrossRef]
- Rezaei Ashtiani, H.R.; Parsa, M.H.; Bisadi, H. Effects of Initial Grain Size on Hot Deformation Behavior of Commercial Pure Aluminum. Mater. Des. 2012, 42, 478–485. [Google Scholar] [CrossRef]
- Tan, Y.B.; Yang, L.H.; Duan, J.L.; Liu, W.C.; Zhang, J.W.; Liu, R.P. Effect of Initial Grain Size On the Hot Deformation Behavior of 47Zr–45Ti–5Al–3V Alloy. J. Nucl. Mater. 2014, 454, 413–420. [Google Scholar] [CrossRef]
- Wang, T.; Guo, H.Z.; Wang, Y.W.; Peng, X.N.; Zhao, Y.; Yao, Z.K. The Effect of Microstructure on Tensile Properties, Deformation Mechanisms and Fracture Models of Tg6 High Temperature Titanium Alloy. Mater. Sci. Eng. A 2011, 528, 2370–2379. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jiang, X.Y.; Shuai, C.J.; Zhao, C.Y.; He, D.G.; Chen, M.S.; Chen, C. Effects of Initial Microstructures On Hot Tensile Deformation Behaviors and Fracture Characteristics of Ti-6Al-4V Alloy. Mater. Sci. Eng. A 2018, 711, 293–302. [Google Scholar] [CrossRef]
- Chen, G.Q.; Fu, G.S.; Wei, T.Y.; Cheng, C.Z.; Wang, H.S.; Wang, J.D. Effect of Initial Grain Size On the Dynamic Recrystallization of Hot Deformation for 3003 Aluminum Alloy. Met. Mater. Int. 2018, 24, 711–719. [Google Scholar] [CrossRef]
- El Wahabi, M.; Gavard, L.; Montheillet, F.; Cabrera, J.M.; Prado, J.M. Effect of Initial Grain Size On Dynamic Recrystallization in High Purity Austenitic Stainless Steels. Acta Mater. 2005, 53, 4605–4612. [Google Scholar] [CrossRef]
- Yang, X.Y.; Sanada, M.; Miura, H.; Sakai, T. Effect of Initial Grain Size on Deformation Behavior and Dynamic Recrystallization of Magnesium Alloy Az31. Mater. Sci. Forum. 2005, 488, 223–226. [Google Scholar] [CrossRef]
- Hassani, F.Z.; Ketabchi, M.; Ebrahimi, G.R.; Bruschi, S. Hot Compression Deformation Characteristics and Microstructural Evolution of a Co–Cr–Mo–C Alloy: Effect of Precipitate and Martensitic Transformation. Mater. Sci. Eng. A 2016, 657, 383–392. [Google Scholar] [CrossRef]
- Lin, Y.C.; Pang, G.D.; Jiang, Y.Q.; Liu, X.G.; Zhang, X.Y.; Chen, C.; Zhou, K.G. Hot Compressive Deformation Behavior and Microstructure Evolution of a Ti-55511 Alloy with Basket-Weave Microstructures. Vacuum 2019, 169, 108878. [Google Scholar] [CrossRef]
- Wen, D.; Lin, Y.C.; Li, X.; Singh, S.K. Hot Deformation Characteristics and Dislocation Substructure Evolution of a Nickel-Base Alloy Considering Effects of δ Phase. J. Alloys Compd. 2018, 764, 1008–1020. [Google Scholar] [CrossRef]
- Wen, D.; Lin, Y.C.; Chen, J.; Chen, X.; Zhang, J.; Liang, Y.; Li, L. Work-Hardening Behaviors of Typical Solution-Treated and Aged Ni-Based Superalloys During Hot Deformation. J. Alloys Compd. 2015, 618, 372–379. [Google Scholar] [CrossRef]
- Kumar, S.S.S.; Raghu, T.; Bhattacharjee, P.P.; Rao, G.A.; Borah, U. Work Hardening Characteristics and Microstructural Evolution during Hot Deformation of a Nickel Superalloy at Moderate Strain Rates. J. Alloys Compd. 2017, 709, 394–409. [Google Scholar] [CrossRef]
- Qin, X.; Huang, D.; Yan, X.; Zhang, X.; Qi, M.; Yue, S. Hot Deformation Behaviors and Optimization of Processing Parameters for Alloy 602 Ca. J. Alloys Compd. 2019, 770, 507–516. [Google Scholar] [CrossRef]
- Li, H.; Zheng, X.; Wan, D.; Chen, L. Effect of time interval on microstructure evolution of medium carbon steel during warm deformation. J. Iron Steel Res. Int. 2019, 26, 602–610. [Google Scholar] [CrossRef]
- Kingkam, W.; Zhao, C.; Li, H.; Zhang, H.; Li, Z. Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and Post-Dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef] [Green Version]
- He, D.G.; Lin, Y.C.; Wang, L.H.; Wu, Q.; Zu, Z.H.; Cheng, H. Influences of Pre-Precipitated δ Phase On Microstructures and Hot Compressive Deformation Features of a Nickel-Based Superalloy. Vacuum 2019, 161, 242–250. [Google Scholar] [CrossRef]
- Marchattiwar, A.; Sarkar, A.; Chakravartty, J.K.; Kashyap, B.P. Dynamic Recrystallization during Hot Deformation of 304 Austenitic Stainless Steel. J. Mater. Eng. Perform. 2013, 22, 2168–2175. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, C.; Zhu, Q.; Ding, C.G.; Qin, H.Y. Hot Compression Deformation and Constitutive Modeling of Gh4698 Alloy. Mater. Des. 2015, 65, 1153–1160. [Google Scholar] [CrossRef]
- Xu, L.; Chen, L.; Chen, G.J.; Wang, M.Q. Hot Deformation Behavior and Microstructure Analysis of 25Cr3Mo3Ninb Steel during Hot Compression Tests. Vacuum 2018, 147, 8–17. [Google Scholar] [CrossRef]
- Wu, H.Y.; Du, L.X.; Liu, X.H. Dynamic Recrystallization and Precipitation Behavior of Mn-Cu-V Weathering Steel. J. Mater. Sci. Technol. 2011, 27, 1131–1138. [Google Scholar] [CrossRef]
- Poliak, E.I.; Jonas, J.J. A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization. Acta Mater. 1996, 44, 127–136. [Google Scholar] [CrossRef]
- Quan, G.Z.; Li, G.S.; Chen, T.; Wang, Y.X.; Zhang, Y.W.; Zhou, J. Dynamic Recrystallization Kinetics of 42Crmo Steel During Compression at Different Temperatures and Strain Rates. Mater. Sci. Eng. A 2011, 528, 4643–4651. [Google Scholar] [CrossRef]
- Dehghan-Manshadi, A.; Barnett, M.; Hodgson, P. Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization. Mater. Sci. Trans. A 2008, 39, 1359–1370. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Wu, X.Y.; Chen, X.M.; Chen, J.; Wen, D.X.; Zhang, J.L.; Li, L.T. EBSD Study of a Hot Deformed Nickel-Based Superalloy. J. Alloys Compd. 2015, 640, 101–113. [Google Scholar] [CrossRef]
- Rout, M.; Ranjan, R.; Pal, S.K.; Singh, S.B. EBSD Study of Microstructure Evolution during Axisymmetric Hot Compression of 304Ln Stainless Steel. Mater. Sci. Eng. A 2018, 711, 378–388. [Google Scholar] [CrossRef]
- Ghazani, M.S.; Eghbali, B. Characterization of the Hot Deformation Microstructure of AISI 321 Austenitic Stainless Steel. Mater. Sci. Eng. A 2018, 730, 380–390. [Google Scholar] [CrossRef]
- Wang, G.Q.; Chen, M.S.; Li, H.B.; Lin, Y.C.; Zeng, W.D.; Ma, Y.Y. Methods and Mechanisms for Uniformly Refining Deformed Mixed and Coarse Grains Inside a Solution-Treated Ni-based Superalloy by Two-Stage Heat Treatment. J. Mater. Sci. Technol. 2021, 77, 47–57. [Google Scholar] [CrossRef]
- Wan, Z.P.; Hu, L.X.; Sun, Y.; Wang, T.; Li, Z. Microstructure Evolution and Dynamic Softening Mechanisms during High-Temperature Deformation of a Precipitate Hardening Ni-Based Superalloy. Vacuum 2018, 155, 585–593. [Google Scholar] [CrossRef]
- Chen, Z.J.; Lin, Y.C.; He, D.G.; Lou, Y.M.; Chen, M.S. A unified dislocation density-based model for an aged polycrystalline Ni-based superalloy considering the coupled effects of complicate deformation mechanisms and initial δ phase. Mater. Sci. Eng. A 2021, 827, 142062. [Google Scholar] [CrossRef]
- Shimizu, I. Theories and Applicability of Grain Size Piezometers: The Role of Dynamic Recrystallization Mechanisms. J. Struct. Geol. 2008, 30, 899–917. [Google Scholar] [CrossRef]
- Su, G.; Yun, Z.; Lin, Y.C.; He, D.G.; Zhang, S.; Chen, Z.J. Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates. Materials 2021, 14, 6750. [Google Scholar] [CrossRef]
- He, S.; Li, C.S.; Zheng, J.J.; Ren, J.Y.; Han, Y.H. Effect of Deformation Temperature On Dynamic Recrystallization and CSL Grain Boundary Distribution of Fe-36%Ni Invar Alloy. J. Mater. Eng. Perform. 2018, 27, 2759–2765. [Google Scholar] [CrossRef]
- Wang, M.H.; Wang, W.H.; Zhou, J.; Dong, X.G.; Jia, Y.J. Strain Effects On Microstructure Behavior of 7050-H112 Aluminum Alloy During Hot Compression. J. Mater. Sci. 2012, 47, 3131–3139. [Google Scholar] [CrossRef]
- Liu, Y.H.; Ning, Y.Q.; Nan, Y.; Liang, H.Q.; Li, Y.Z.; Zhao, Z.L. Characterization of Hot Deformation Behavior and Processing Map of FGH4096–GH4133B Dual Alloys. J. Alloys Compd. 2015, 633, 505–515. [Google Scholar] [CrossRef]
- Xia, X.S.; Chen, Q.; Li, J.P.; Shu, D.Y.; Hu, C.K.; Huang, S.H.; Zhao, Z.D. Characterization of Hot Deformation Behavior of as-Extruded Mg–Gd–Y–Zn–Zr Alloy. J. Alloys Compd. 2014, 610, 203–211. [Google Scholar] [CrossRef]
- Wen, D.X.; Lin, Y.C.; Zhou, Y. A New Dynamic Recrystallization Kinetics Model for a Nb Containing Ni-Fe-Cr-base Superalloy Considering Influences of Initial δ Phase. Vacuum 2017, 141, 316–327. [Google Scholar] [CrossRef]
- Cao, Y.; Di, H.S.; Zhang, J.Q.; Zhang, J.C.; Ma, T.J.; Misra, R.D.K. An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel–Chromium Alloy (800H) during Hot Deformation. Mater. Sci. Eng. A 2013, 585, 71–85. [Google Scholar] [CrossRef]
- Brandon, D.G. The Structure of High-Angle Grain Boundaries. Acta Metall. 1966, 14, 1479–1484. [Google Scholar] [CrossRef]
- Odnobokova, M.; Tikhonova, M.; Belyakov, A.; Kaibyshev, R. Development of Σ3n CSL Boundaries in Austenitic Stainless Steels Subjected to Large Strain Deformation and Annealing. J. Mater. Sci. 2017, 52, 4210–4223. [Google Scholar] [CrossRef]
- Zhang, H.B.; Zhang, K.F.; Zhou, H.P.; Lu, Z.; Zhao, C.H.; Yang, X.L. Effect of Strain Rate On Microstructure Evolution of a Nickel-Based Superalloy During Hot Deformation. Mater. Des. 2015, 80, 51–62. [Google Scholar] [CrossRef]
- Lin, Y.C.; He, D.G.; Chen, M.S.; Chen, X.M.; Zhao, C.Y.; Ma, X.; Long, Z.L. EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy During Hot Compressive Deformation. Mater. Des. 2016, 97, 13–24. [Google Scholar] [CrossRef]
- Lin, Y.C.; Huang, J.; He, D.G.; Zhang, X.Y.; Wu, Q.; Wang, L.H.; Chen, C.; Zhou, K.C. Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy during Hot Compression. J. Alloys Compd. 2019, 795, 471–482. [Google Scholar] [CrossRef]
Chemical Composition | C | Si | Mn | Mo | S | P | Cr | Fe |
---|---|---|---|---|---|---|---|---|
Measured | 0.34 | 0.21 | 0.56 | 0.19 | 0.005 | 0.019 | 0.95 | Bal |
Case | without Ultrasonic | with Ultrasonic | ||
---|---|---|---|---|
950 °C, 0.1 s−1 | 1050 °C, 0.1 s−1 | 950 °C, 0.1 s−1 | 1050 °C, 0.1 s−1 | |
20.83° | 23.3° | 21.5° | 35.0° | |
2 ≤ θ ≤ 10° | 0.604 | 0.586 | 0.578 | 0.529 |
10°–15° | 0.039 | 0.026 | 0.04 | 0.05 |
>15° | 0.357 | 0.387 | 0.380 | 0.421 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Zhou, Y.; Zhang, W.; Zhang, X.; Xu, M. Effect of Ultrasonic-Assisted Casting on Hot Deformation Mechanism and Microstructure of 35CrMo Steel Ingot. Materials 2022, 15, 146. https://doi.org/10.3390/ma15010146
Yang Q, Zhou Y, Zhang W, Zhang X, Xu M. Effect of Ultrasonic-Assisted Casting on Hot Deformation Mechanism and Microstructure of 35CrMo Steel Ingot. Materials. 2022; 15(1):146. https://doi.org/10.3390/ma15010146
Chicago/Turabian StyleYang, Qiumei, Yajun Zhou, Wei Zhang, Xun Zhang, and Mengfei Xu. 2022. "Effect of Ultrasonic-Assisted Casting on Hot Deformation Mechanism and Microstructure of 35CrMo Steel Ingot" Materials 15, no. 1: 146. https://doi.org/10.3390/ma15010146
APA StyleYang, Q., Zhou, Y., Zhang, W., Zhang, X., & Xu, M. (2022). Effect of Ultrasonic-Assisted Casting on Hot Deformation Mechanism and Microstructure of 35CrMo Steel Ingot. Materials, 15(1), 146. https://doi.org/10.3390/ma15010146