3D X-ray Microscopy of Ultrasonically Welded Aluminum/Fiber-Reinforced Polymer Hybrid Joints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Torsional Ultrasonic Welding of Light Metal/FRP Joints
2.2. Base Materials
2.3. X-ray Microscopy
3. Results and Discussion
3.1. X-ray Microscopy on the AA5024/(GF)-CF-PEEK Joint Welded with Suitable Process Parameters
3.2. X-ray Microscopy on the AA5024/(GF)-CF-PEEK Joint Welded with Non-Suitable Process Parameters
3.3. X-ray Microscopy on Mechanically Treated AA5024/(GF)-CF-PEEK
3.4. Local Segmentation of the Joint Composition
4. Summary and Conclusions
- Hybrid AA5024/(GF)-CF-PEEK composites were analyzed and characterized by X-ray microscopy on a macroscopic and microscopic level. The thermomechanical influence of the joining process affected, but did not destroy the glass fiber bundles in the interface of the joining zone.
- Deviating process parameters of about 10% reduced the resulting tensile shear forces by only about 15%, but led to a qualitatively significant difference in the formation of the joining zone. The pore volume in the CFRP base material increased by 150%. The sum of the porosities and air inclusions in the forming aluminum dome remained almost identical for V1 and V2.
- By drilling a hole in the center of the joining zone, the resulting tensile shear forces were reduced by about 8%. The pore content in the CFRP base material increased by about 90%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breuer, U.P. Commercial Aircraft Composite Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef] [Green Version]
- Immarigeon, J.P.; Holt, R.; Koul, A.; Zhao, L.; Wallace, W.; Beddoes, J. Lightweight materials for aircraft applications. Mater. Charact. 1995, 35, 41–67. [Google Scholar] [CrossRef]
- Galińska, A.; Galiński, C. Mechanical Joining of Fibre Reinforced Polymer Composites to Metals—A Review. Part II: Riveting, Clinching, Non-Adhesive Form-Locked Joints, Pin and Loop Joining. Polymers 2020, 12, 1681. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.; Dong, Y.; Sarker, P.; Uddin, M.; Littlefair, G.; Dixit, A.; Chattopadhyaya, S. Joining of carbon fiber-reinforced polymer (CFRP) composites and aluminium alloys—A review. Compos. Part A Appl. Sci. Manuf. 2017, 101, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Skorupa, A. Riveted Lap Joints in Aircraft Fuselage; Springer GmbH: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Lionetto, F.; Balle, F.; Maffezzoli, A. Hybrid ultrasonic spot welding of aluminum to carbon fiber-reinforced epoxy composites. J. Mater. Process. Technol. 2017, 247, 289–295. [Google Scholar] [CrossRef]
- Balle, F.; Wagner, G.; Eifler, D. Ultrasonic Metal Welding of Aluminium Sheets to Carbon Fibre Reinforced Thermoplastic Composites. Adv. Eng. Mater. 2009, 11, 35–39. [Google Scholar] [CrossRef]
- Feistauer, E.E.; dos Santos, J.F.; Amancio-Filho, S.T. An investigation of the ultrasonic joining process parameters effect on the mechanical properties of metal-composite hybrid joints. Weld. World 2020, 64, 1481–1495. [Google Scholar] [CrossRef]
- Goushegir, S.M. Friction spot joining (FSpJ) of aluminum-CFRP hybrid structures. Weld. World 2016, 60, 1073–1093. [Google Scholar] [CrossRef] [Green Version]
- Franco, G.D.; Fratini, L.; Pasta, A. Analysis of the mechanical performance of hybrid (SPR/bonded) single-lap joints between CFRP panels and aluminum blanks. Int. J. Adhes. Adhes. 2013, 41, 24–32. [Google Scholar] [CrossRef]
- Dong, H.; Tang, Z.; Li, P.; Wu, B.; Hao, X.; Ma, C. Friction stir spot welding of 5052 aluminum alloy to carbon fiber reinforced polyether ether ketone composites. Mater. Des. 2021, 201, 109495. [Google Scholar] [CrossRef]
- Jiang, B.; Chen, Q.; Yang, J. Advances in joining technology of carbon fiber-reinforced thermoplastic composite materials and aluminum alloys. Int. J. Adv. Manuf. Technol. 2020, 110, 2631–2649. [Google Scholar] [CrossRef]
- Beer, A. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Der Phys. Und Chem. 1852, 162, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Merkle, A.P.; Gelb, J. The Ascent of 3D X-ray Microscopy in the Laboratory. Microsc. Today 2013, 21, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Wang, Q.; Hu, J.; Zhou, H.; Shan, Q.; Zhu, G.; Kan, Y.; Gao, L.; Dong, S. Acoustic emission and X-ray computed microtomography characterization of damage accumulation in a woven Cf/SiC composite. Mater. Charact. 2019, 155, 109748. [Google Scholar] [CrossRef]
- Hanaor, D.; Hu, L.; Kan, W.; Proust, G.; Foley, M.; Karaman, I.; Radovic, M. Compressive performance and crack propagation in Al alloy/Ti2AlC composites. Mater. Sci. Eng. A 2016, 672, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Thi, T.B.N.; Morioka, M.; Yokoyama, A.; Hamanaka, S.; Yamashita, K.; Nonomura, C. Measurement of fiber orientation distribution in injection-molded short-glass-fiber composites using X-ray computed tomography. J. Mater. Process. Technol. 2015, 219, 1–9. [Google Scholar] [CrossRef]
- Netto, N.; Zhao, L.; Soete, J.; Pyka, G.; Simar, A. Manufacturing high strength aluminum matrix composites by friction stir processing: An innovative approach. J. Mater. Process. Technol. 2020, 283, 116722. [Google Scholar] [CrossRef]
- Scott, H.; Boyd, J.; Pilkey, A. Micro-computed tomographic imaging of void damage in a hot-rolled complex phase sheet steel. Mater. Sci. Eng. A 2017, 682, 139–146. [Google Scholar] [CrossRef]
- Cakmak, E.; Gussev, M.N.; Sridharan, N.; Seren, M.H.; An, K.; Wang, H.; Terrani, K.A. Micromechanical and microstructure analysis of strain-induced phenomena in ultrasonic additively-manufactured Al-6061 alloy. Mater. Sci. Eng. A 2020, 770, 138533. [Google Scholar] [CrossRef]
- Maskery, I.; Aboulkhair, N.; Corfield, M.; Tuck, C.; Clare, A.; Leach, R.; Wildman, R.; Ashcroft, I.; Hague, R. Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography. Mater. Charact. 2016, 111, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Dudek, M.; Hunter, L.; Kranz, S.; Williams, J.; Lau, S.; Chawla, N. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints. Mater. Charact. 2010, 61, 433–439. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Dai, W.; Liu, Y.; Tian, S.; Huang, W.; Jia, D.; He, D.; Zhang, Y. Static compression testing CFRP single-lap composited joints using X-ray CT. Compos. Struct. 2020, 234, 111667. [Google Scholar] [CrossRef]
- Tutunjian, S.; Dannemann, M.; Fischer, F.; Eroğlu, O.; Modler, N. A Control Method for the Ultrasonic Spot Welding of Fiber-Reinforced Thermoplastic Laminates through the Weld-Power Time Derivative. J. Manuf. Mater. Process. 2018, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Wu, C.; Gao, L.; Xu, C.; Xu, Y.; Chen, G. Detection of internal defects in CFRP strengthened steel structures using eddy current pulsed thermography. Constr. Build. Mater. 2021, 282, 122642. [Google Scholar] [CrossRef]
- Jelinek, M.; Reinhart, G. Knowledge-based approach in the field of non-destructive inspection of CFRP metal hybrid components via optical lock-in thermography. NDT E Int. 2020, 116, 102264. [Google Scholar] [CrossRef]
- Staab, F.; Balle, F. Ultrasonic torsion welding of ageing-resistant Al/CFRP joints: Properties, microstructure and joint formation. Ultrasonics 2019, 93, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Staab, F.; Liesegang, M.; Balle, F. Local shear strength distribution of ultrasonically welded hybrid Aluminium to CFRP joints. Compos. Struct. 2020, 248, 112481. [Google Scholar] [CrossRef]
- Ehrenstein, G.W.; Riedel, G.; Trawiel, P. Thermal Analysis of Plastics: Theory and Practice; Hanser Publishers and Hanser Gardner Publications: Munich, Germany; Cincinnati, OH, USA, 2004. [Google Scholar]
- Zeiss X-ray Microscopy. Available online: http://www.zeiss.com/microscopy/int/products/x-ray-microscopy.html (accessed on 29 January 2021).
- Object Research Systems (ORS) Inc. Dragonfly Pro 4.1; Computer Software; Object Research Systems (ORS) Inc.: Montreal, QC, Canada, 2020. [Google Scholar]
Metal Sheet | AA5024 | Composite Sheet | (GF)-CF-PEEK |
---|---|---|---|
Young’s modulus (GPa) | 72.8 ± 0.6 | Young’s modulus in fiber direction (GPa) | 60.1 ± 0.4 |
Yield strength (MPa) | 315 ± 4 | Ultimate tensile strength (MPa) | 850 ± 28 |
Ultimate tensile strength (MPa) | 395 ± 5 | Melting Point (°C) | 340 [29] |
Ultimate elongation A50 (%) | 12.4 ± 1.2 | Decomposition Temperature (°C) | >550 [29] |
Variant V1 | Variant V2 | Variant V3 | |
---|---|---|---|
Reference | Increased Parameters | Geometry Variation | |
u (µm) | 40 | 40 | 40 |
FUS (N) | 300 | 380 | 300 |
WUS (Ws) | 4300 | 4800 | 4300 |
FUTS (N) | 8310 ± 540 | 7237 ± 641 | 7639 ± 588 |
Scan Type | Objective | No. of Projections | Voxel Size | Tension | Power | Binning | Projection Time |
---|---|---|---|---|---|---|---|
Overview | 0.4× | 2401 | 9.24 µm | 40 kV | 3 W | 1 | 30 s |
High-resol. | 4× | 3201 | 1.98 µm | 40 kV | 3 W | 1 | 120 s |
Variant 1 | Variant 2 | Variant 3 | ||||
---|---|---|---|---|---|---|
mm3 | % | mm3 | % | mm3 | % | |
CFRP | 521.30 | 57.51 | 586.64 | 57.45 | 598.58 | 58.09 |
Porosities in CFRP | 4.24 | 0.47 | 10.51 | 1.03 | 7.97 | 0.77 |
GF textile | 16.97 | 1.87 | 21.83 | 2.14 | 25.50 | 2.47 |
Air inclusion | 14.13 | 1.56 | 7.89 | 0.77 | 0.69 | 0.07 |
Thermoplastic | 5.40 | 0.60 | 9.62 | 0.94 | 2.07 | 0.20 |
Aluminum | 344.48 | 38.00 | 384.60 | 37.67 | 395.64 | 38.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staab, F.; Prescher, M.; Balle, F.; Kirste, L. 3D X-ray Microscopy of Ultrasonically Welded Aluminum/Fiber-Reinforced Polymer Hybrid Joints. Materials 2021, 14, 1784. https://doi.org/10.3390/ma14071784
Staab F, Prescher M, Balle F, Kirste L. 3D X-ray Microscopy of Ultrasonically Welded Aluminum/Fiber-Reinforced Polymer Hybrid Joints. Materials. 2021; 14(7):1784. https://doi.org/10.3390/ma14071784
Chicago/Turabian StyleStaab, Florian, Mario Prescher, Frank Balle, and Lutz Kirste. 2021. "3D X-ray Microscopy of Ultrasonically Welded Aluminum/Fiber-Reinforced Polymer Hybrid Joints" Materials 14, no. 7: 1784. https://doi.org/10.3390/ma14071784
APA StyleStaab, F., Prescher, M., Balle, F., & Kirste, L. (2021). 3D X-ray Microscopy of Ultrasonically Welded Aluminum/Fiber-Reinforced Polymer Hybrid Joints. Materials, 14(7), 1784. https://doi.org/10.3390/ma14071784