Growth of Semi-Polar (10 3) AlN Film on M-Plane Sapphire with High-Temperature Nitridation by HVPE
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, H.; Huang, X.; Chen, H.; Lu, Z.; Zhao, Y. Fabrication and characterization of ultra-wide bandgap AlN-based schottky diodes on sapphire by MOCVD. IEEE J. Electron. Devices 2017, 5, 518–524. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Luo, X.; Liang, Y.; Wuu, D.S.; Tin, C.C.; Lu, X.; He, K.; Wan, L.; Feng, Z.C. Surface, structural and optical properties of AlN thin films grown on different face sapphire substrates by metalorganic chemical vapor deposition. Appl. Surf. Sci. 2018, 458, 972–977. [Google Scholar] [CrossRef]
- Satoh, I.; Arakawa, S.; Tanizaki, K.; Miyanaga, M.; Yamamoto, Y. Sublimation growth of nonpolar AlN single crystals and defect characterization. Phys. Stat. Solidi C 2010, 7, 1767–1769. [Google Scholar] [CrossRef]
- Adachi, M.; Fukuyama, H. Non-polar a-plane AlN growth on nitrided r-Plane sapphire by Ga-Al liquid-phase epitaxy. Phys. Stat. Solidi B 2018, 255, 1700478. [Google Scholar] [CrossRef]
- Shah, A.P.; Rahman, A.A.; Bhattacharya, A. Temperature-dependence of Cl2/Ar ICP-RIE of polar, semipolar, and nonpolar GaN and AlN following BCl3/Ar breakthrough plasma. J. Vac. Sci. Technol. A 2020, 38, 013001. [Google Scholar] [CrossRef]
- Ben, J.; Sun, X.; Jia, Y.; Jiang, K.; Shi, Z.; Liu, H.; Wang, Y.; Kai, C.; Wu, Y.; Li, D. Defect evolution in AlN templates on PVD-AlN/sapphire substrates by thermal annealing. CrystEngComm 2018, 20, 4623–4629. [Google Scholar] [CrossRef]
- Akasaka, T.; Kobayashi, Y.; Makimoto, T. Growth of nonpolar AlN (110) and (100) films on SiC substrates by flow-rate modulation epitaxy. Appl. Phys. Lett. 2007, 90, 121919. [Google Scholar] [CrossRef]
- Jo, M.; Itokazu, Y.; Kuwaba, S.; Hirayama, H. Improved crystal quality of semipolar AlN by employing a thermal annealing technique with MOVPE. J. Cryst. Growth 2019, 507, 307–309. [Google Scholar] [CrossRef]
- Ichikawa, S.; Funato, M.; Kawakami, Y. Metal-organic vapor phase epitaxy of pit-free AlN homoepitaxial films on various semipolar substrates. J. Cryst. Growth 2019, 522, 68–77. [Google Scholar] [CrossRef]
- Duc Duy, L.; Kim, D.Y.; Hong, S.K. Crystal orientation variation of nonpolar AlN films with III/V ratio on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Electron. Mater. Lett. 2014, 10, 1109–1114. [Google Scholar] [CrossRef]
- Du, C.; Jing, L.; Jiang, C.; Liu, T.; Pu, X.; Sun, J.; Li, D.; Hu, W. An effective approach to alleviating the thermal effect in microstripe array-LEDs via the piezo-phototronic effect. Mater. Horiz. 2018, 5, 116–122. [Google Scholar] [CrossRef]
- Graziano, M.B.; Bryan, I.; Bryan, Z.; Kirste, R.; Tweedie, J.; Collazo, R.; Sitar, Z. Structural characteristics of m-plane AlN substrates and homoepitaxial films. J. Cryst. Growth 2019, 507, 389–394. [Google Scholar] [CrossRef]
- Jo, M.; Hirayama, H. Growth of non-polar a-plane AlN on r-plane sapphire. Jpn. J. Appl. Phys. 2016, 55, 05FA02. [Google Scholar] [CrossRef]
- Lahourcade, L.; Renard, J.; Kandaswamy, P.K.; Gayral, B.; Chauvat, M.P.; Ruterana, P.; Monroy, E. PAMBE growth of (112)-oriented GaN/AlN nanostructures on m-sapphire. Microelectron. J. 2009, 40, 325–327. [Google Scholar] [CrossRef]
- Jo, M.; Hirayama, H. Effects of Ga supply on the growth of (11-22) AlN on m-plane (10-10) sapphire substrates. Phys. Stat. Solidi B 2018, 255, 1700418. [Google Scholar] [CrossRef]
- Wu, J.J.; Katagiri, Y.; Okuura, K.; Li, D.B.; Miyake, H.; Hiramatsu, K. Effects of initial stages on the crystal quality of nonpolar a-plane AlN on r-plane sapphire by low-pressure HVPE. J. Cryst. Growth 2009, 311, 3801–3805. [Google Scholar] [CrossRef]
- Jiang, K.; Sun, X.; Ben, J.; Jia, Y.; Liu, H.; Wang, Y.; Wu, Y.; Kai, C.; Li, D. The defect evolution in homoepitaxial AlN layers grown by high-temperature metal-organic chemical vapor deposition. CrystEngComm 2018, 20, 2720–2728. [Google Scholar] [CrossRef]
- Sun, X.; Li, D.; Chen, Y.; Song, H.; Jiang, H.; Li, Z.; Miao, G.; Zhang, Z. In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition. CrystEngComm 2013, 15, 6066–6073. [Google Scholar] [CrossRef]
- Jo, M.; Morishita, N.; Okada, N.; Itokazu, Y.; Kamata, N.; Tadatomo, K.; Hirayama, H. Impact of thermal treatment on the growth of semipolar AlN on m-plane sapphire. AIP Adv. 2018, 8, 105312. [Google Scholar] [CrossRef]
- Shen, X.Q.; Kojima, K.; Okumura, H. Single-phase high-quality semipolar (10-13) AlN epilayers on m-plane (10-10) sapphire substrates. Appl. Phys. Express 2020, 13, 035502. [Google Scholar] [CrossRef]
- Jo, M.; Oshima, I.; Matsumoto, T.; Maeda, N.; Kamata, N.; Hirayama, H. Structural and electrical properties of semipolar (11-22) AlGaN grown on m-plane (1-100) sapphire substrates. Phys. Stat. Solidi C 2016, 14, 1600248. [Google Scholar] [CrossRef]
- Wu, J.J.; Okuura, K.; Okumura, K.; Miyake, H.; Hiramatsu, K.; Chen, Z.; Egawa, T. In-plane structural anisotropy and polarized Raman-active mode studies of nonpolar AlN grown on 6H-SiC by low-pressure hydride vapor phase epitaxy. J. Cryst. Growth 2010, 312, 490–494. [Google Scholar] [CrossRef]
- Tang, B.; Hu, H.; Wan, H.; Zhao, J.; Gong, L.; Lei, Y.; Zhao, Q.; Zhou, S. Growth of high-quality AlN films on sapphire substrate by introducing voids through growth-mode modification. Appl. Surf. Sci. 2020, 518, 146218. [Google Scholar] [CrossRef]
- Nomura, K.; Hanagata, S.; Kunisaki, A.; Togashi, R.; Murakami, H.; Kumagai, Y.; Koukitu, A. High-temperature heat-treatment of c-, a-, r-, and m-plane sapphire substrates in mixed gases of H2 and N2. Jpn. J. Appl. Phys. 2013, 52, 041102. [Google Scholar] [CrossRef]
- Lin, C.H.; Tamaki, S.; Yamashita, Y.; Miyake, H.; Hiramatsu, K. Effects of AlN buffer layer thickness on the crystallinity and surface morphology of 10-µm-thick a-plane AlN films grown on r-plane sapphire substrates. Appl. Phys. Express 2016, 9, 081001. [Google Scholar] [CrossRef]
- Tajima, J.; Murakami, H.; Kumagai, Y.; Takada, K.; Koukitu, A. Preparation of a crack-free AlN template layer on sapphire substrate by hydride vapor-phase epitaxy at 1450 °C. J. Cryst. Growth 2009, 311, 2837–2839. [Google Scholar] [CrossRef]
- Jo, M.; Itokazu, Y.; Kuwaba, S.; Hirayama, H. Controlled crystal orientations of semipolar AlN grown on an m-plane sapphire by MOCVD. Jpn. J. Appl. Phys. 2019, 58, SC1031. [Google Scholar] [CrossRef]
- Zhao, G.J.; Wang, L.S.; Yang, S.Y.; Li, H.J.; Wei, H.Y.; Han, D.Y.; Wang, Z.G. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Han, J.; Shi, F.F.; Xing, Y.H.; Wan, P.Y.; Gao, Z.Y.; Hu, X.L.; Li, T.; Cao, S.W.; Zhang, Y. Effect of high-temperature AlN buffer on anisotropy of semi-polar (11-22) GaN with two pressure growth stages. Micro Nano Lett. 2019, 14, 972–975. [Google Scholar] [CrossRef]
- Nagashima, T.; Harada, M.; Yanagi, H.; Fukuyama, H.; Kumagai, Y.; Koukitu, A.; Takada, K. Improvement of AlN crystalline quality with high epitaxial growth rates by hydride vapor phase epitaxy. J. Cryst. Growth 2007, 305, 355–359. [Google Scholar] [CrossRef]
- Davydov, V.; Kitaev, Y.; Goncharuk, I.; Smirnov, A.; Graul, J.; Semchinova, O.; Uffmann, D.; Smirnov, M.; Mirgorodsky, A.; Evarestov, R.A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 1998, 58, 12899–12907. [Google Scholar] [CrossRef]
- Dai, Y.; Li, S.; Gao, H.; Wang, W.; Sun, Q.; Peng, Q.; Gui, C.; Qian, Z.; Liu, S. Stress evolution in AlN and GaN grown on Si(111): Experiments and theoretical modeling. J. Mater. Sci. Mater. Electron. 2015, 27, 2004–2013. [Google Scholar] [CrossRef]
- Kuball, M. Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control. Surf. Interf. Anal. 2001, 31, 987–999. [Google Scholar] [CrossRef]
Samples | S1 | S2 | S3 | S4 | S5 | S6 |
---|---|---|---|---|---|---|
Nitridation (°C) | No | 1400 | 1200 | 1300 | 1400 | 1500 |
V/III ratio of buffer layers | 90 | 90 | 150 | 150 | 150 | 150 |
X-ray diffraction Peaks |
Samples | Direction | Average Length (nm) | Average Height (nm) | Line Density (μm−1) | Surface Density (μm−2) |
---|---|---|---|---|---|
S4 (Nitridation at 1300 °C) | 69.0 | 33.3 | 3.8 | 34.2 | |
69.2 | 27.4 | 9.0 | |||
S5 (Nitridation at 1400 °C) | 92.8 | 39.6 | 1.3 | 8.1 | |
74.4 | 42.2 | 6.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhao, J.; Liu, T.; Lu, Y.; Zhang, J.
Growth of Semi-Polar (10
Li X, Zhao J, Liu T, Lu Y, Zhang J.
Growth of Semi-Polar (10
Li, Xu, Jianyun Zhao, Ting Liu, Yong Lu, and Jicai Zhang.
2021. "Growth of Semi-Polar (10
Li, X., Zhao, J., Liu, T., Lu, Y., & Zhang, J.
(2021). Growth of Semi-Polar (10