PDMAEMA/Polyester Miktopolymers: Synthesis via In-Out Approach, Physicochemical Characterization and Enzymatic Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. Synthesis of Star-Shaped Macroinitiator (MI)
2.2.2. Synthesis of Miktopolymers
2.3. Characterization
2.3.1. Nuclear Magnetic Resonance (1H NMR)
2.3.2. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.3.3. Differential Scanning Calorimetry (DSC)
2.3.4. Gel Permeation Chromatography/Size Exclusion Chromatography (GPC/SEC)
2.3.5. Enzymatic Degradation
3. Results
3.1. Characterization of Polymers
3.2. Enzymatic Degradation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Li, S.; Garreau, H.; Vert, M. Selective enzymatic degradations of poly(L-lactide) and poly(ε-caprolactone) blend films. Biomacromolecules 2000, 1, 350–359. [Google Scholar] [CrossRef]
- Luckachan, G.E.; Pillai, C.K.S. Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011, 19, 637–676. [Google Scholar] [CrossRef]
- Athanasiou, K.A.; Niederauer, G.G.; Agrawal, C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996, 17, 93–102. [Google Scholar] [CrossRef]
- Gunatillake, P.A.; Adhikari, R.; Gadegaard, N. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 2003, 5, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chłopek, J.; Morawska-Chochół, A.; Szaraniec, B. The influence of the environment on the degradation of polylactides and their composites. J. Achiev. Mater. Manuf.Eng. 2010, 43, 72–79. [Google Scholar]
- Geralt, S. (Ed.) Degradable Polymers Principles and Applications, 2nd ed.; Springer: Dordrecht, The Netherlands, 2002; ISBN 9789048160914. [Google Scholar]
- Sivalingam, G.; Chattopadhyay, S.; Madras, G. Solvent effects on the lipase catalyzed biodegradation of poly (ε-caprolactone) in solution. Polym. Degrad. Stab. 2003, 79, 413–418. [Google Scholar] [CrossRef]
- Li, S.; McCarthy, S. Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules 1999, 32, 4454–4456. [Google Scholar] [CrossRef]
- Jin, Q.; Maji, S.; Agarwal, S. Novel amphiphilic, biodegradable, biocompatible, cross-linkable copolymers: Synthesis, characterization and drug delivery applications. Polym. Chem. 2012, 3, 2785–2793. [Google Scholar] [CrossRef]
- Van de Velde, K.; Kiekens, P. Biopolymers: Overview of several properties and consequences on their applications. Polym. Test. 2002, 21, 433–442. [Google Scholar] [CrossRef]
- Darney, P.D.; Monroe, S.E.; Klaisle, C.M.; Alvarado, A. Clinical evaluation of the Capronor contraceptive implant: Preliminary report. Am. J. Obstet. Gynecol. 1989, 160, 1292–1295. [Google Scholar] [CrossRef]
- Middleton, J.C.; Tipton, A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346. [Google Scholar] [CrossRef]
- Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 2007, 32, 455–482. [Google Scholar] [CrossRef]
- Lasprilla, A.J.R.; Martinez, G.A.R.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef]
- Gunatillake, P.; Mayadunne, R.; Adhikari, R. Recent Developments in Biodegradable Synthetic Polymers. Biotechnol. Annu. Rev. 2006, 12, 301–347. [Google Scholar] [PubMed]
- Ueda, H.; Tabata, Y. Polyhydroxyalkanonate derivatives in current clinical applications and trials. Adv. Drug Deliv. Rev. 2003, 55, 501–518. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef] [PubMed]
- Hwan, J.; Ree, M.; Kim, H. Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters. Catal. Today 2006, 115, 283–287. [Google Scholar] [CrossRef]
- Gan, Z.; Yu, D.; Zhong, Z.; Liang, Q.; Jing, X. Enzymatic degradation of poly(ε-caprolactone)/poly(dl-lactide) blends in phosphate buffer solution. Polymer 1999, 40, 2859–2862. [Google Scholar] [CrossRef]
- Lin, G.; Cosimbescu, L.; Karin, N.J.; Gutwska, A.; Tarasevich, B.J. Injectable and thermogelling hydrogels of PCL-g-PEG: Mechanisms, rheological and enzymatic degradation properties. J. Mater. Chem. B 2013, 1, 1249–1255. [Google Scholar] [CrossRef]
- Dong, J.; Liao, L.; Ma, Y.; Shi, L.; Wang, G.; Fan, Z.; Li, S.; Lu, Z. Enzyme-catalyzed degradation behavior of L -lactide/trimethylene carbonate/glycolide terpolymers and their composites with poly(l-lactide-co-glycolide) fibers. Polym. Degrad. Stab. 2014, 103, 26–34. [Google Scholar] [CrossRef]
- Ding, M.; Qian, Z.; Wang, J.; Li, J.; Tan, H.; Gu, Q.; Fu, Q. Effect of PEG content on the properties of biodegradable amphiphilic. Polym. Chem. 2011, 2, 885–891. [Google Scholar] [CrossRef]
- Jiang, N.; Jiang, S.; Hou, Y.; Yan, S.; Zhang, G.; Gan, Z. In fl uence of chemical structure on enzymatic degradation of single crystals of PCL-b-PEO amphiphilic block copolymer. Polymer 2010, 51, 2426–2434. [Google Scholar] [CrossRef]
- Blackwell, C.; Haernvall, K.; Guebitz, G.; Groombridge, M.; Gonzales, D.; Khosravi, E. Enzymatic Degradation of Star Poly(ε-Caprolactone) with Different Central Units. Polymers 2018, 10, 1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosario, F.; Corradini, E.; Casarin, S.A.; Agnelli, J.A.M. Effect of Gamma Radiation on the Properties of Poly(3- Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (e-Caprolactone) Blends. J. Polym. Environ. 2013, 21, 789–794. [Google Scholar] [CrossRef]
- Müller, A.J.; María, B.; Arnal, L. Nucleation and Crystallization in Diblock and Triblock Copolymers. Adv. Polym. Sci. 2005, 190, 1–63. [Google Scholar]
- Lorenzo, A.T.; Muller, A.J.; Lin, M.-C.; Chen, H.-L.; Jeng, U.-S.; Priftis, D.; Pitsikalis, M.; Hadjichristidis, N. Influence of Macromolecular Architecture on the Crystallization of (PCL2)-b-(PS2)4-Miktoarm Star Block Copolymers in Comparison to Linear PCL-b-PS Diblock Copolymer Analogues. Macromolecules 2009, 42, 8353–8364. [Google Scholar] [CrossRef]
- Menczel, J.D.; Prime, R.B. Polymers Thermal Analysis of Fundamentals and Applications; Menczel, J.D., Prime, R.B., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; ISBN 9780471769170. [Google Scholar]
- Kemme, M.; Prokesch, I.; Heinzel-Wieland, R. Comparative study on the enzymatic degradation of poly(lactic-co-glycolic acid) by hydrolytic enzymes based on the colorimetric quantification of glycolic acid. Polym. Test. 2011, 30, 743–748. [Google Scholar] [CrossRef]
- Drogoń, A.; Pyda, M. Badanie procesu fizycznego starzenia amorficznego polilaktydu metodą różnicowej kalorymetrii skaningowej. Polim. Polym. 2019, 64, 127–135. [Google Scholar] [CrossRef]
- Fortunati, E.; Gigli, M.; Luzi, F.; Dominici, F.; Lotti, N.; Gzzano, M.; Cano, A.; Chiralt, A.; Munari, A.; Kenny, J.M.; et al. Processing and characterization of nanocomposite based on poly(butylene/triethylenesuccinate) copolymers and cellulose nanocrystals. Carbohydr. Polymer 2017, 165, 51–60. [Google Scholar] [CrossRef]
- Gigli, M.; Negroni, A.; Soccio, M.; Zanaroli, G.; Lotti, N.; Fava, F.; Munrari, A. Enzymatic hydrolysis studies on novel eco-friendly aliphatic thiocopolyesters. Polym. Degrad. Stab. 2013, 98, 934–942. [Google Scholar] [CrossRef] [Green Version]
- Eldsater, C.; Erlandsson, B.; Renstad, R.; Albertsson, A.-C.; Karlsson, S. The biodegradation of amorphous and crystalline regions in film-blown poly(ɛ-caprolactone). Polymer 2000, 41, 1297–1304. [Google Scholar] [CrossRef]
- Jenkins, M.J.; Harrison, K.L. The effect of crystalline morphology on the degradation of polycaprolactone in a solution of phosphate buffer and lipase. Polym. Adv. Technol. 2008, 19, 1901–1906. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Irfan, S.A.; Razali, R.; KuShaari, K.; Mansor, N. Reaction-multi diffusion model for nutrient release and autocatalytic degradation of pla-coated controlled-release fertilizer. Polymers 2017, 9, 111. [Google Scholar] [CrossRef] [Green Version]
Miktopolymer | ɛ-CL | LA | GA | MI | Sn(Oct)2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
mL | mmol | g | mmol | g | mmol | g | mmol | μL | mmol | |
(MP1) | 1.5 | 13.54 | - | - | - | - | 0.7 | 0.05 | 18 | 0.05 |
(MP2) | - | - | 1.5 | 10.41 | - | - | 0.4 | 0.03 | 10 | 0.03 |
(MP3) | - | - | 1.5 | 10.41 | 0.4 | 3.47 | 0.5 | 0.04 | 13 | 0.04 |
Miktopolymer | MI | DPDMAEMA per arm | DPCL per arm | DPLA per arm | DPGA per arm | Hydrophobic Fraction (%) | Mn, NMR (g/mol) | Mn, SEC (g/mol) | Ð |
---|---|---|---|---|---|---|---|---|---|
MP1 | MI 1 | 72 | 28 | - | - | 80 | 40,400 | 7300 | 1.24 |
MP2 | MI 2 | 78 | - | 27 | - | 94 | 105,700 | 4100 | 1.28 |
MP3 * | MI 2 | 78 | - | 15 | 10 | 95 | 130,200 | 5100 | 1.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupczak, M.; Mielańczyk, A.; Neugebauer, D. PDMAEMA/Polyester Miktopolymers: Synthesis via In-Out Approach, Physicochemical Characterization and Enzymatic Degradation. Materials 2021, 14, 1277. https://doi.org/10.3390/ma14051277
Kupczak M, Mielańczyk A, Neugebauer D. PDMAEMA/Polyester Miktopolymers: Synthesis via In-Out Approach, Physicochemical Characterization and Enzymatic Degradation. Materials. 2021; 14(5):1277. https://doi.org/10.3390/ma14051277
Chicago/Turabian StyleKupczak, Maria, Anna Mielańczyk, and Dorota Neugebauer. 2021. "PDMAEMA/Polyester Miktopolymers: Synthesis via In-Out Approach, Physicochemical Characterization and Enzymatic Degradation" Materials 14, no. 5: 1277. https://doi.org/10.3390/ma14051277
APA StyleKupczak, M., Mielańczyk, A., & Neugebauer, D. (2021). PDMAEMA/Polyester Miktopolymers: Synthesis via In-Out Approach, Physicochemical Characterization and Enzymatic Degradation. Materials, 14(5), 1277. https://doi.org/10.3390/ma14051277