Exploring Structural Evolution of Portland Cement Blended with Supplementary Cementitious Materials in Seawater
Abstract
:1. Introduction
2. Research Significance
3. Materials and Methods
4. Results
4.1. Phase Assemblage of Neat PC
4.2. Phase Assemblage of PC-Silica Fume
4.3. Phase Assemblage of PC-Metakaolin
4.4. Phase Assemblage of PC-Glass Powder
5. Discussion
6. Conclusions
- The strength development of the neat PC samples was faster when exposed to seawater, while other samples incorporating SCMs exhibited the slower strength development.
- The control exposed to seawater exhibited 14.82% and 12.14% higher compressive strengths compared to those cured in tap water at 7 and 28 days.
- The samples incorporating metakaolin showed the highest compressive strength of 76.60 MPa at 90 days tap water curing and this was 17% higher than that of control.
- The obtained characterization and modelling results show that the phase assemblages of the samples are similar, while there is a quantitative difference in the AFm-related phases.
- The amount of portlandite is highest in the PC-glass powder system due to the high Ca content of the glass powder.
- The main reaction product experimentally observed during the immersion in seawater over 90 days is Cl-AFm and brucite.
- The modelling results predict that M-S-H, calcite and hydrotalcite are to increasingly form at an extended timescale.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Weerdt, K.; Lothenbach, B.; Geiker, M.R. Comparing chloride seawater and NaCl solution in Portland cement mortar. Cem. Concr. Res. 2019, 115, 80–89. [Google Scholar] [CrossRef]
- Maes, M.; Mittermayr, F.; De Belie, N. The influence of sodium and magnesium sulphate on the penetration of chlorides in mortar. Mater. Struct. 2017, 50, 153. [Google Scholar] [CrossRef]
- Bai, J.; Wild, S.; Sabir, B. Chloride ingress and strength loss in concrete with different PC–PFA–MK binder compositions exposed to synthetic seawater. Cem. Concr. Res. 2003, 33, 353–362. [Google Scholar] [CrossRef]
- Chen, H.-J.; Huang, S.-S.; Tang, C.-W.; Malek, M.A.; Ean, L.-W. Effect of curing environments on strength, porosity and chloride ingress resistance of blast furnace slag cement concretes: A construction site study. Constr. Build. Mater. 2012, 35, 1063–1070. [Google Scholar] [CrossRef]
- Yang, J.M.; Tang, Q.Q.; Wu, Q.S.; Li, X.H.; Sun, Z.X. The effect of seawater curing on properties of magnesium potassium phosphate cement. Constr. Build. Mater. 2017, 141, 470–478. [Google Scholar] [CrossRef]
- De Weerdt, K.; Justnes, H.; Geiker, M.R. Changes in the phase assemblage of concrete exposed to sea water. Cem. Concr. Compos. 2014, 47, 53–63. [Google Scholar] [CrossRef]
- De Weerdt, K.; Justnes, H. The effect of sea water on the phase assemblage of hydrated cement paste. Cem. Concr. Compos. 2015, 55, 215–222. [Google Scholar] [CrossRef]
- Thomas, M.D.; Scott, A.; Bremner, T.; Bilodeau, A.; Day, D. Performance of slag concrete in marine environment. ACI Mater. J. 2008, 105, 628–634. [Google Scholar]
- Thomas, M.D.A.; Hooton, R.D.; Scott, A.; Zibara, H. The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cem. Concr. Res. 2012, 42, 1–7. [Google Scholar] [CrossRef]
- Elahi, A.; Basheer, P.A.M.; Nanukuttan, S.V.; Khan, Q.U.Z. Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr. Build. Mater. 2010, 24, 292–299. [Google Scholar] [CrossRef]
- Adu-Amankwah, S.; Zajac, M.; Stabler, C.; Lothenbach, B. Influence of limestone on the hydration of ternary slag cements. Cem. Concr. Res. 2017, 100, 96–109. [Google Scholar] [CrossRef]
- De Weerdt, K.; Haha, M.B.; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 2011, 41, 279–291. [Google Scholar] [CrossRef]
- Deschner, F.; Lothenbach, B.; Winnefeld, F.; Neubauer, J. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash. Cem. Concr. Res. 2013, 52, 169–181. [Google Scholar] [CrossRef]
- Yoon, H.; Seo, J.; Kim, S.; Lee, H.-K.; Park, S. Characterization of blast furnace slag-blended Portland cement for immobilization of Co. Cem. Concr. Res. 2020, 134, 106089. [Google Scholar] [CrossRef]
- Shi, Z.; Geiker, M.R.; De Weerdt, K.; Østnor, T.A.; Lothenbach, B.; Winnefeld, F.; Skibsted, J. Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends. Cem. Concr. Res. 2017, 95, 205–216. [Google Scholar] [CrossRef]
- Shi, Z.G.; Lothenbach, B.; Geiker, M.R.; Kaufmann, J.; Leemann, A.; Ferreiro, S.; Skibsted, J. Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cem. Concr. Res. 2016, 88, 60–72. [Google Scholar] [CrossRef]
- Leng, F.; Feng, N.; Lu, X. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cem. Concr. Res. 2000, 30, 989–992. [Google Scholar] [CrossRef]
- Li, H.; Farzadnia, N.; Shi, C. The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration. Constr. Build. Mater. 2018, 185, 508–518. [Google Scholar] [CrossRef]
- Du, H.; Tan, K.H. Properties of high volume glass powder concrete. Cem. Concr. Compos. 2017, 75, 22–29. [Google Scholar] [CrossRef]
- Sikora, P.; Cendrowski, K.; Elrahman, M.A.; Chung, S.-Y.; Mijowska, E.; Stephan, D. The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica. Appl. Nanosci. 2019, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shakiba, M.; Rahgozar, P.; Elahi, A.R.; Rahgozar, R. Effect of activated pozzolan with Ca(OH)2 and nano-SiO2 on microstructure and hydration of high-volume natural pozzolan paste. Civ. Eng. J. 2018, 4, 2437–2449. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Karade, S.; Bhattacharyya, S.; Yousuf, M.; Ahalawat, S. Beneficial role of nanosilica in cement based materials—A review. Constr. Build. Mater. 2013, 47, 1069–1077. [Google Scholar] [CrossRef]
- Abousnina, R.; Manalo, A.; Ferdous, W.; Lokuge, W.; Benabed, B.; Al-Jabri, K.S. Characteristics, strength development and microstructure of cement mortar containing oil-contaminated sand. Constr. Build. Mater. 2020, 252, 119155. [Google Scholar] [CrossRef]
- Siddika, A.; Mamun, M.A.A.; Ferdous, W.; Saha, A.K.; Alyousef, R. 3D-printed concrete: Applications, performance, and challenges. J. Sustain. Cem. Based Mater. 2019, 24, 1–38. [Google Scholar] [CrossRef]
- Lothenbach, B.; Kulik, D.A.; Matschei, T.; Balonis, M.; Baquerizo, L.; Dilnes, B.; Miron, J.D.; Myers, R.J. Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 2019, 115, 472–506. [Google Scholar] [CrossRef] [Green Version]
- Parrot, L.J.; Killoh, D.C. Prediction of cement hydration. Br. Ceram. Proc. 1984, 35, 41–53. [Google Scholar]
- Lothenbach, B.; Matschei, T.; Möschner, G.; Glasser, F.P. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 2008, 38, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lothenbach, B.; Winnefeld, F. Thermodynamic modelling of the hydration of Portland cement. Cem. Concr. Res. 2006, 36, 209–226. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Benli, A.; Karataş, M.; Gurses, E. Effect of sea water and MgSO4 solution on the mechanical properties and durability of self-compacting mortars with fly ash/silica fume. Constr. Build. Mater. 2017, 146, 464–474. [Google Scholar] [CrossRef]
- Li, Q.; Geng, H.; Huang, Y.; Shui, Z. Chloride resistance of concrete with metakaolin addition and seawater mixing: A comparative study. Constr. Build. Mater. 2015, 101, 184–192. [Google Scholar] [CrossRef]
Composition | Cement | Silica Fume | Metakaolin | Glass Powder |
---|---|---|---|---|
CaO | 61.0 | 0.2 | 0.6 | 30.1 |
SiO2 | 17.2 | 92.8 | 48.5 | 51.9 |
Al2O3 | 4.8 | 0.2 | 43.4 | 13.5 |
Fe2O3 | 4.1 | 2.2 | 3.2 | 0.3 |
SO3 | 3.3 | 0.6 | 0.1 | - |
Na2O | 0.2 | 0.2 | 0.1 | 0.6 |
K2O | 1.2 | 0.3 | 0.3 | 0.1 |
MgO | 2.4 | 0.2 | 0.1 | 1.2 |
SrO | 0.1 | - | - | 0.4 |
TiO2 | 0.4 | - | 2.3 | 0.4 |
Others | 0.9 | 0.2 | 0.4 | 0.5 |
LOI | 4.4 | 3.1 | 1.1 | 1.1 |
Sieve Size | Mass Retained (%) | Cumulative Mass Retained (%) |
---|---|---|
1.0 mm | 0.00 | 0.00 |
850 µm | 0.01 | 0.01 |
600 µm | 1.20 | 1.21 |
425 µm | 6.50 | 7.71 |
300 µm | 28.00 | 35.71 |
212 µm | 33.94 | 69.65 |
150 µm | 21.05 | 90.70 |
106 µm | 7.50 | 98.20 |
75 µm | 1.50 | 99.70 |
Pan | 0.30 | 100.00 |
Ions | Concentration (mg/L) |
---|---|
Cl− | 21,075 ± 829 |
Br− | 51 ± 2 |
SO42− | 2258 ± 147 |
Na+ | 17,075 ± 1798 |
K+ | 549 ± 40 |
Ca2+ | 364 ±12 |
Mg2+ | 973 ± 41 |
Parameters | A | B | C | D | R2 |
---|---|---|---|---|---|
C3S | 0 | 0.676 | 0.205 | 87.878 | 0.991 |
C2S | 0 | 0.616 | 0.300 | 69.407 | 0.992 |
C3A | 0 | 0.665 | 0.218 | 88.502 | 0.991 |
C4AF | 0 | 0.498 | 0.707 | 83.434 | 0.986 |
Metakaolin | 0.082 | 0.941 | 2.975 | 99.844 | 0.999 |
Silica fume | 0 | 0.644 | 10 | 75.111 | 0.999 |
Glass powder * | 0.008 | 0.5 | 5 | 80 | - |
Type | Compressive Strength (MPa) | |||||||
---|---|---|---|---|---|---|---|---|
Tap Water | Seawater | |||||||
1 Day | 7 Days | 28 Days | 90 Days | 1 Day | 7 Days | 28 Days | 90 Days | |
Portland Cement | 21.27 | 41.81 | 50.88 | 65.33 | 21.27 | 46.53 | 52.09 | 58.70 |
Silica Fume | 20.48 | 53.12 | 64.42 | 71.25 | 20.48 | 54.61 | 62.13 | 67.58 |
Metakaolin | 19.51 | 52.84 | 66.77 | 76.60 | 19.51 | 52.83 | 61.27 | 74.75 |
Glass Powder | 16.49 | 46.94 | 53.79 | 66.67 | 16.49 | 41.02 | 53.12 | 65.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Park, J.K.; Lee, N.; Kim, M.O. Exploring Structural Evolution of Portland Cement Blended with Supplementary Cementitious Materials in Seawater. Materials 2021, 14, 1210. https://doi.org/10.3390/ma14051210
Park S, Park JK, Lee N, Kim MO. Exploring Structural Evolution of Portland Cement Blended with Supplementary Cementitious Materials in Seawater. Materials. 2021; 14(5):1210. https://doi.org/10.3390/ma14051210
Chicago/Turabian StylePark, Solmoi, Jun Kil Park, Namkon Lee, and Min Ook Kim. 2021. "Exploring Structural Evolution of Portland Cement Blended with Supplementary Cementitious Materials in Seawater" Materials 14, no. 5: 1210. https://doi.org/10.3390/ma14051210
APA StylePark, S., Park, J. K., Lee, N., & Kim, M. O. (2021). Exploring Structural Evolution of Portland Cement Blended with Supplementary Cementitious Materials in Seawater. Materials, 14(5), 1210. https://doi.org/10.3390/ma14051210