Temperature-Induced Phase Transition Characteristics of [001]-Oriented 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 (PZN-7%PT) Single Crystal by Using Piezoresponse Force Microscopy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Li, F.; Jiang, X.; Kim, J.; Luo, J.; Geng, X. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—A review. Prog. Mater. Sci. 2015, 68, 1–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, F. High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 2012, 111, 031301. [Google Scholar] [CrossRef]
- Luo, L.; Zhao, X.; Luo, H. Single Crystal PZN-PT, PMN-PT, PSN-PT, and PIN-PT-Based Piezoelectric Materials. In Advanced Piezoelectric Materials; Uchino, K., Ed.; Woodhead Publishing: Berlin, Germany, 2010; pp. 271–318. [Google Scholar]
- Luo, J.; Zhang, S. Advances in the Growth and Characterization of Relaxor-PT-Based Ferroelectric Single Crystals. Crystals 2014, 4, 306–330. [Google Scholar] [CrossRef]
- Peräntie, J.; Hagberg, J.; Uusimäki, A.; Tian, J.; Han, P. Characteristics of electric-field-induced polarization rotation in 001-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals close to the morphotropic phase boundary. J. Appl. Phys. 2012, 112, 034117. [Google Scholar] [CrossRef]
- Chien, R.R.; Schmidt, V.H.; Tu, C.-S.; Wang, F.-T.; Lim, L.C. Temperature-Dependent Phase Transitions in Pb(Zn1/3Nb2/3)0.93Ti0.07O3 Crystal. Ferroelectrics 2006, 339, 115–120. [Google Scholar] [CrossRef]
- Forrester, J.S.; Piltz, R.O.; Kisi, E.H.; McIntyre, G.J. Temperature-induced phase transitions in the giant-piezoelectric-effect material PZN-4.5%PT. J. Phys. Condens. Matter 2001, 13, L825–L833. [Google Scholar] [CrossRef]
- Hajjaji, A.; Pruvost, S.; Sebald, G.; Lebrun, L.; Guyomar, D.; Benkhouja, K. Mechanism of depolarization with temperature for (1−x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 single crystals. Acta Mater. 2009, 57, 2243–2249. [Google Scholar] [CrossRef]
- Zhang, S.; Shrout, T.R. Relaxor-PT single crystals: Observations and developments. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 2138–2146. [Google Scholar] [CrossRef]
- Han, J.; Cao, W. Electric field effects on the phase transitions in [001]-oriented(1−x) Pb(Mg1/3Nb2/3)O3−xPbTiO3single crystals with compositions near the morphotropic phase boundary. Phys. Rev. B 2003, 68, 134102. [Google Scholar] [CrossRef]
- Forrester, J.S.; Kisi, E.H.; Knight, K.S. Phase transitions in PZN–4.5%PT in the range 4.2–450 K. Phys. B Condens. Matter 2006, 385, 160–162. [Google Scholar] [CrossRef]
- Lim, L.C.; Chang, W.S.; Rajan, K.K.; Shanthi, M.; Yang, P.; Moser, H.O.; Tu, C.-S.; Wang, F.-T.; Tseng, C.-T.; Bhalla, A.; et al. Phase transformations in annealed PZN-4.5%PT single crystals. J. Appl. Phys. 2008, 103, 084122. [Google Scholar] [CrossRef]
- Ang, C.; Yu, Z. Dielectric Behavior of 95.5% Pb(Zn1/3Nb2/3)O3 –4.5% PbTiO3 Single Crystals under DC Bias from 12–550 K. Ferroelectrics 2014, 470, 60–66. [Google Scholar] [CrossRef]
- Hentati, M.A.; Dammak, H.; Khemakhem, H.; Thi, M.P. Dielectric properties and phase transitions of [001], [110], and [111] oriented Pb(Zn1/3Nb2/3)O3-6%PbTiO3 single crystals. J. Appl. Phys. 2013, 113, 244104. [Google Scholar] [CrossRef]
- Chang, W.S.; Lim, L.C.; Yang, P.; Tu, C.-S. Rhombohedral-to-tetragonal phase transformation and thermal depolarization in relaxor-based ferroelectric single crystal. Appl. Phys. Lett. 2008, 93, 82903. [Google Scholar] [CrossRef]
- Chang, W.S.; Lim, L.C.; Yang, P.; Wang, F.-T.; Hsieh, C.-M.; Tu, C.-S. Structural phase transformations and nanotwin domains in 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3. J. Phys. Condens. Matter 2008, 20, 395229. [Google Scholar] [CrossRef]
- Ye, Z.-G.; Dong, M.; Zhang, L. Domain structures and phase transitions of the relaxor-based piezo-/ ferroelectric (1−x) Pb(Zn1/3Nb2/3)O3-xPbTiO3single crystals. Ferroelectrics 1999, 229, 223–232. [Google Scholar] [CrossRef]
- Chang, W.S.; Lim, L.C.; Yang, P.; Ku, C.-S.; Lee, H.-Y.; Tu, C.-S. Transformation stress induced metastable tetragonal phase in (93–92)%Pb(Zn1/3Nb2/3)O3]–(7–8)%PbTiO3 single crystals. J. Appl. Phys. 2010, 108, 44105. [Google Scholar] [CrossRef]
- Chang, W.S.; Lim, L.C.; Yang, P.; Ku, C.-S.; Lee, H.-Y.; Tu, C.-S. Nanotwin domains in high-strain ferroelectric 89.5%Pb(Zn1/3Nb2/3)O3–10.5%PbTiO3 single crystal. J. Appl. Phys. 2010, 108, 106102. [Google Scholar] [CrossRef]
- La-Orauttapong, D.; Noheda, B.; Ye, Z.-G.; Gehring, P.M.; Toulouse, J.; Cox, D.E.; Shirane, G. Phase diagram of the relaxor ferroelectric(1−x)Pb(Zn1/3Nb2/3)O3−xPbTiO3. Phys. Rev. B 2002, 65, 144101. [Google Scholar] [CrossRef]
- Bai, F.; Wang, N.; Li, J.; Viehland, D.; Gehring, P.M.; Xu, G.; Shirane, G. X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1/3Nb2/3)-0.3PbTiO3 crystal. J. Appl. Phys. 2004, 96, 1620. [Google Scholar] [CrossRef]
- Gehring, P.M. Neutron diffuse scattering in lead-based relaxor ferroelectrics and its relationship to the ultra-high piezoelectricity. J. Adv. Dielectr. 2012, 2, 1241005. [Google Scholar] [CrossRef]
- Piltz, R.O. Domain Structure of 001-Poled PZN-4.5%PT Using Neutron Diffraction. Ferroelectrics 2006, 339, 47–51. [Google Scholar] [CrossRef]
- Ohwada, K.; Hirota, K.; Rehrig, P.W.; Gehring, P.M.; Noheda, B.; Fujii, Y.; Park, S.-E.E.; Shirane, G. Neutron Diffraction Study of the Irreversible R–MA–MCPhase Transition in Single Crystal Pb[(Zn1/3Nb2/3)1-xTix]O3. J. Phys. Soc. Jpn. 2001, 70, 2778–2783. [Google Scholar] [CrossRef]
- Lima-Silva, J.; Guedes, I.; Filho, J.M.; Ayala, A.P.; Lente, M.; Eiras, J.; García, D. Phase diagram of the relaxor (1−x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 investigated by dielectric and Raman spectroscopies. Solid State Commun. 2004, 131, 111–114. [Google Scholar] [CrossRef]
- El Marssi, M.; Dammak, H. Orthorhombic and monoclinic ferroelectric phases investigated by Raman spectroscopy in PZN-4.5%PT and PZN-9%PT crystals. Solid State Commun. 2007, 142, 487–491. [Google Scholar] [CrossRef]
- Tu, C.-S.; Chen, L.-F.; Schmidt, V.H.; Tsai, C. Phases and Domain Structures in Relaxor-Based Ferroelectric (PbMg1/3Nb2/3O3)0.69(PbTiO3)0.31 Single Crystal. Jpn. J. Appl. Phys. 2001, 40, 4118–4125. [Google Scholar] [CrossRef]
- Buixaderas, E.; Kamba, S.; Petzelt, J. Lattice Dynamics and Central-Mode Phenomena in the Dielectric Response of Ferroelectrics and Related Materials. Ferroelectrics 2004, 308, 131–192. [Google Scholar] [CrossRef]
- Kamba, S.; Buixaderas, E.; Petzelt, J.; Fousek, J.; Nosek, J.; Bridenbaugh, P. Infrared and Raman spectroscopy of [Pb(Zn1/3Nb2/3)O3]0.92–[PbTiO3]0.08 and [Pb(Mg1/3Nb2/3)O3]0.71–[PbTiO3]0.29 single crystals. J. Appl. Phys. 2003, 93, 933–939. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Bonnell, D.A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 2002, 65, 125408. [Google Scholar] [CrossRef]
- Lim, L.; Rajan, K. High-homogeneity High-performance flux-grown Pb(Zn1/3Nb2/3)O3–(6–7)%PbTiO3 single crystals. J. Cryst. Growth 2004, 271, 435–444. [Google Scholar] [CrossRef]
- Rodriguez, B.J.; Callahan, C.; Kalinin, S.V.; Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 2007, 18, 475504. [Google Scholar] [CrossRef]
- Wong, M.F.; Zeng, K. Mechanical Polishing Effects Toward Surface Domain Evolution in Pb(Zn1/3Nb2/3)O3-PbTiO3 Single Crystals. J. Am. Ceram. Soc. 2010, 94, 1079–1086. [Google Scholar] [CrossRef]
- Boulle, A.; Infante, C.; Lemée, I. Diffuse X-ray scattering from 180° ferroelectric stripe domains: Polarization-induced strain, period disorder and wall roughness. J. Appl. Crystallogr. 2016, 49, 845–855. [Google Scholar] [CrossRef]
- Yadav, P.; Lalla, N.P.; Sharma, S. Coexistence of domain relaxation with ferroelectric phase transitions in BaTiO3. J. Appl. Phys. 2017, 121, 184101. [Google Scholar] [CrossRef]
- Segura, J.J.; Domingo, N.; Fraxedas, J.; Verdaguer, A. Surface screening of written ferroelectric domains in ambient conditions. J. Appl. Phys. 2013, 113, 187213. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Bonnell, D.A. Screening Phenomena on Oxide Surfaces and Its Implications for Local Electrostatic and Transport Measurements. Nano Lett. 2004, 4, 555–560. [Google Scholar] [CrossRef]
- Rojac, T.; Kosec, M.; Budic, B.; Setter, N.; Damjanovic, D. Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J. Appl. Phys. 2010, 108, 074107. [Google Scholar] [CrossRef]
- García, J.E.; Gomis, V.; Pérez, R.; Albareda, A.; Eiras, J.A. Unexpected dielectric response in lead zirconate titanate ceramics: The role of ferroelectric domain wall pinning effects. Appl. Phys. Lett. 2007, 91, 42902. [Google Scholar] [CrossRef]
- Catalán, G.; Seidel, J.; Ramesh, R.; Scott, J.F. Domain wall nanoelectronics. Rev. Mod. Phys. 2012, 84, 119–156. [Google Scholar] [CrossRef]
- Noheda, B.; Cox, D.E.; Shirane, G.; Park, S.-E.; Cross, L.E.; Zhong, Z. Polarization Rotation via a Monoclinic Phase in the Piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Phys. Rev. Lett. 2001, 86, 3891–3894. [Google Scholar] [CrossRef]
- Davis, M.; Damjanovic, D.; Setter, N. Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Phys. Rev. 2006, 73, 014115. [Google Scholar] [CrossRef]
- Wang, R.; Yang, B.; Luo, Z.; Sun, E.; Sun, Y.; Xu, H.; Zhao, J.; Zheng, L.; Zhou, H.; Gao, C.; et al. Local twin domains and tip-voltage-induced domain switching of monoclinic MC phase in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by piezoresponse force microscopy. Phys. Rev. B 2016, 94. [Google Scholar] [CrossRef]
- Kiat, J.-M.; Uesu, Y.; Dkhil, B.; Matsuda, M.; Malibert, C.; Calvarin, G. Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds. Phys. Rev. 2002, 65, 064106. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zeng, K. Temperature-Induced Phase Transition Characteristics of [001]-Oriented 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 (PZN-7%PT) Single Crystal by Using Piezoresponse Force Microscopy. Materials 2021, 14, 855. https://doi.org/10.3390/ma14040855
Wang H, Zeng K. Temperature-Induced Phase Transition Characteristics of [001]-Oriented 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 (PZN-7%PT) Single Crystal by Using Piezoresponse Force Microscopy. Materials. 2021; 14(4):855. https://doi.org/10.3390/ma14040855
Chicago/Turabian StyleWang, Hongli, and Kaiyang Zeng. 2021. "Temperature-Induced Phase Transition Characteristics of [001]-Oriented 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 (PZN-7%PT) Single Crystal by Using Piezoresponse Force Microscopy" Materials 14, no. 4: 855. https://doi.org/10.3390/ma14040855
APA StyleWang, H., & Zeng, K. (2021). Temperature-Induced Phase Transition Characteristics of [001]-Oriented 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 (PZN-7%PT) Single Crystal by Using Piezoresponse Force Microscopy. Materials, 14(4), 855. https://doi.org/10.3390/ma14040855