Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Grafting of Polymer Brushes from GO Surface
2.3.1. Modifications of GO Sheets with APTES
2.3.2. Immobilization of Initiator on GO_APTES
2.3.3. Grafting of Polymer Brushes from GO_BIBB
2.4. Preparation of PA6 Nanocomposites
3. Results
3.1. Preparation of GO_PAAM via SI-ATRP
3.2. Preparation and Characterization of PA6-Based Nanocomposites
3.2.1. Mechanical Properties
3.2.2. Thermal Conductivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randviir, E.P.; Brownson, D.A.C.; Banks, C.E. A decade of graphene research: Production, applications and outlook. Mater. Today. 2014, 17, 426–432. [Google Scholar] [CrossRef]
- Cruz-Silva; Endo, M.; Terrones, M. Graphene oxide films, fibers, and membranes. Nanotechnol. Rev. 2016, 5, 377–391. [Google Scholar] [CrossRef]
- Sanes, J.; Sánchez, C.; Pamies, R.; Avilés, M.-D.; Bermúdez, M.-D. Extrusion of Polymer Nanocomposites with Graphene and Graphene Derivative Nanofillers: An Overview of Recent Developments. Materials 2020, 13, 549. [Google Scholar] [CrossRef]
- Li, T.; Meng, Z.; Keten, S. Interfacial mechanics and viscoelastic properties of patchy graphene oxide reinforced nanocomposites. Carbon 2020, 158, 303–313. [Google Scholar] [CrossRef]
- Chen, W.; Weimin, H.; Li, D.; Chen, S.; Dai, Z. A critical review on the development and performance of polymer/graphene nanocomposites. Sci. Eng. Compos. Mater. 2018, 25, 1059–1073. [Google Scholar] [CrossRef]
- Research and Markets. Glob Therm Conduct Plast Mark Anal Co Profiles, Size, Share, Growth, Trends Forecast to 2025. 2018. Available online: https://www.businesswire.com/news/home/20180417006 (accessed on 9 October 2020).
- Guo, F.; Shen, X.; Zhou, J.; Liu, D.; Zheng, Q.; Yang, J.; Jia, B.; Lau, A.K.; Kim, J.K. Highly Thermally Conductive Dielectric Nanocomposites with Synergistic Alignments of Graphene and Boron Nitride Nanosheets. Adv. Funct. Mater. 2020, 30, 1910826. [Google Scholar] [CrossRef]
- Gao, Y.; Müller-Plathe, F. Increasing the thermal conductivity of graphene-polyamide-6,6 nanocomposites by surface-grafted polymer chains: Calculation with molecular dynamics and effective-medium approximation. J. Phys. Chem. B. 2016, 120, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.B.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Terrones, M.; Martín, O.; González, M.; Pozuelo, J.; Serrano, B.; Cabanelas, J.C.; Vega-Díaz, S.M.; Baselga, J. Interphases in graphene polymer-based nanocomposites: Achievements and challenges. Adv. Mater. 2011, 23, 5302–5310. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Mao, J. Aligned-graphene composites: A review. J. Mater. Sci. 2019, 54, 36–61. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Lai, L.; Liu, P.; Wu, H.; Xu, J.; Severtson, S.J.; Wang, W.-J. Synergistic enhancement of gas barrier and aging resistance for biodegradable films with aligned graphene nanosheets. Carbon 2021, 172, 31–40. [Google Scholar] [CrossRef]
- Chen, N.; Ren, Y.; Kong, P.; Tan, L.; Feng, H.; Luo, Y. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors. Appl. Surf. Sci. 2017, 392, 71–79. [Google Scholar] [CrossRef]
- Ding, P.; Su, S.; Song, N.; Tang, S.; Liu, Y.; Shi, L. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 2014, 66, 576–584. [Google Scholar] [CrossRef]
- Fukushima, H.; Drzal, L.T. Nylon—Exfoliated Graphite Nanoplatelet (xGnP) Nanocomposites with Enhanced Mechanical, Electrical and Thermal Properties; NSTI-Nanotech; Nano Science and Technology Institute: Washington, DC, USA, 2006; Volume 1, ISBN 0-9767985-6-5. [Google Scholar]
- Cho, E.-C.; Huang, J.-H.; Li, C.-P.; Chang-Jian, C.-W.; Lee, K.-C.; Hsiao, Y.-S.; Huang, J.-H. Graphene-based thermoplastic composites and their application for LED thermal management. Carbon 2016, 102, 66–73. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Meng, F.; Li, D.; Tian, X.; Wang, Z.; Zhou, Z. Super-high thermal conductivity of polyamide-6/graphene-graphene oxide composites through in situ polymerization. High Perform. Polym. 2017, 29, 585–594. [Google Scholar] [CrossRef]
- Dai, W.; Yu, J.; Wang, Y.; Song, Y.; Alam, F.E.; Nishimura, K.; Lin, C.-T.; Jiang, N. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J. Mater. Chem. A 2015, 3, 4884–4891. [Google Scholar] [CrossRef]
- Gonalves, G.; Marques, P.A.A.P.; Barros-Timmons, A.; Bdkin, I.; Singh, M.K.; Emami, N.; Grácio, J. Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J. Mater. Chem. 2010, 20, 9927–9934. [Google Scholar] [CrossRef]
- Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 2009, 19, 7098–7105. [Google Scholar] [CrossRef]
- Liu, D.; Ding, C.; Chi, F.; Pan, N.; Wen, J.; Xiong, J.; Hu, S. Polymer brushes on graphene oxide for efficient adsorption of heavy metal ions from water. J. Appl. Polym. Sci. 2019, 136, 1–9. [Google Scholar] [CrossRef]
- Zygo, M.; Mrlik, M.; Ilcikova, M.; Hrabalikova, M.; Osicka, J.; Cvek, M.; Sedlacik, M.; Hanulikova, B.; Munster, L.; Skoda, D.; et al. Effect of structure of polymers grafted from graphene oxide on the compatibility of particles with a silicone-based environment and the stimuli-responsive capabilities of their composites. Nanomaterials 2020, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Manias, E.; Polizos, G.; Nakajima, H.; Heidecker, M.J. Fundamentals of Polymer Nanocomposite Technology. In Flame Retardant Polymer Nanocomposites; Morgan, A.B., Wilkie, C.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Hasheminejad, K.; Montazeri, A. Enhanced interfacial characteristics in PLA/graphene composites through numerically-designed interface treatment. Appl. Surf. Sci. 2020, 502, 144150. [Google Scholar] [CrossRef]
- Kulshreshtha, A.; Modica, K.J.; Jayaraman, A. Impact of hydrogen bonding interactions on graft-matrix wetting and structure in polymer nanocomposites. Macromolecules 2019, 52, 2725–2735. [Google Scholar] [CrossRef]
- Zhang, H.; Du, Z.; Jiang, Y.; Yu, Q. Preparation and characterization of grafting polyacrylamide from PET films by SI-ATRP via water-borne system. J. Appl. Polym. Sci. 2012, 126, 1941–1955. [Google Scholar] [CrossRef]
- Pant, B.; Saud, P.S.; Park, M.; Park, S.J.; Kim, H.Y. General one-pot strategy to prepare Ag-TiO2 decorated reduced graphene oxide nanocomposites for chemical and biological disinfectant. J. Alloys Compd. 2016, 671, 51–59. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, J.; Song, M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 2011, 21, 3455–3461. [Google Scholar] [CrossRef]
- Çiplak, Z.; Yildiz, N.; Cąlimli, A. Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Fuller. Nanotub. Carbon Nanostructures 2015, 23, 361–370. [Google Scholar] [CrossRef]
- Rattana, T.; Chaiyakun, S.; Witit-Anun, N.; Nuntawong, N.; Chindaudom, P.; Oaew, S.; Kedkeaw, C.; Limsuwan, P. Preparation and characterization of graphene oxide nanosheets. Procedia Eng. 2012, 32, 759–764. [Google Scholar] [CrossRef]
- Pourhashem, S.; Vaezi, M.R.; Rashidi, A.; Bagherzadeh, M.R. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Prog. Org. Coatings 2017, 111, 47–56. [Google Scholar] [CrossRef]
- Roghani-Mamaqani, H.; Haddadi-Asi, V. In-plane functionalizing graphene nanolayers with polystyrene by atom transfer radical polymerization: Grafting grom hydroxyl groups. Polym. Compos. 2014, 35, 386–395. [Google Scholar] [CrossRef]
- Baliś, A.; Wolski, K.; Zapotoczny, S. Thermoresponsive Polymer Gating System on Mesoporous Shells of Silica Particles Serving as Smart Nanocontainers. Polymers 2020, 12, 888. [Google Scholar] [CrossRef]
- Fortenberry, D.I.; Pojman, J.A. Solvent-free synthesis of polyacrylamide by frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 1129–1135. [Google Scholar] [CrossRef]
- Lian, B.; De Luca, S.; You, Y.; Alwarappan, S.; Yoshimura, M.; Sahajwalla, V.; Smith, S.C.; Leslie, G.; Joshi, R.K. Extraordinary water adsorption characteristics of graphene oxide. Chem. Sci. 2018, 9, 5106–5111. [Google Scholar] [CrossRef] [PubMed]
- Pomorska, A.; Wolski, K.; Wytrwal-Sarna, M.; Bernasik, A.; Zapotoczny, S. Polymer brushes grafted from nanostructured zinc oxide layers—Spatially controlled decoration of nanorods. Eur. Polym. J. 2019, 112, 186–194. [Google Scholar] [CrossRef]
- Gorman, C.B.; Petrie, R.J.; Genzer, J. Effect of substrate geometry on polymer molecular weight and polydispersity during surface-initiated polymerization. Macromolecules 2008, 41, 4856–4865. [Google Scholar] [CrossRef]
- Kozanoǧlu, S.; Özdemir, T.; Usanmaz, A. Polymerization of N-vinylcaprolactam and characterization of poly(N-vinylcaprolactam). J. Macromol. Sci. A 2011, 48, 467–477. [Google Scholar] [CrossRef]
- Yoo, H.-J.; Kim, H.-D. Characteristics of waterborne polyurethane/poly (N-vinylpyrrolidone) composite films for wound-healing dressings. J. Appl. Polym. Sci. 2008, 107, 331–338. [Google Scholar] [CrossRef]
- Heller, D.A.; Barone, P.W.; Swanson, J.P.; Mayrhofer, R.M.; Strano, M.S. Using Raman spectroscopy to elucidate the aggregation state of single-walled carbon nanotubes. J. Phys. Chem. B 2004, 108, 6905–6909. [Google Scholar] [CrossRef]
- Bîru, E.I.; Iovu, H. Graphene nanocomposites studied by Raman spectroscopy, Raman Spectroscopy, Gustavo Morari do Nascimento; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Claramunt, S.; Varea, A.; Lo, D.; Vela, M.M.; Cornet, A.; Cirera, A. The importance of interbands on the interpretation of the raman spectrum of graphene oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- Rashmi, B.J.; Prashantha, K.; Lacrampe, M.-F.; Krawczak, P. Scalable production of multifunctional bio-based polyamide 11/graphene nanocomposites by melt extrusion processes via masterbatch approach. Adv. Polym. Technol. 2018, 37, 1067–1075. [Google Scholar] [CrossRef]
- dal Lago, E.; Cagnin, E.; Boaretti, C.; Roso, M.; Lorenzetti, A.; Modesti, M. Influence of different carbon-based fillers on electrical and mechanical properties of a PC/ABS blend. Polymers 2020, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Ya, C.; Yang, G. Recent advances in graphene/polyamide 6 composites: A review. RSC Adv. 2015, 5, 61688–61702. [Google Scholar] [CrossRef]
- Lai, H.; Chen, G.; Wu, P.; Li, Z. Thermoresponsive behavior of an LCST-type polymer based on a pyrrolidone structure in aqueous solution. Soft Matter 2012, 8, 2662–2670. [Google Scholar] [CrossRef]
Properties | Unit | PA6/GO_PAAM | PA6/GO | PA6 |
---|---|---|---|---|
Yield point | MPa | 40.0 ± 0.9 | 42.0 ± 1.2 | 41.0 ± 1.2 |
Yield point elongation | % | 24.0 ± 1.6 | 11.0 ± 1.3 | 11.0 ± 1.2 |
Tensile strength | MPa | 38 ± 1 | 34 ± 0.6 | 33.5 ± 0.6 |
Elongation at break | % | 241 ± 14 | 240 ± 9 | 240 ± 9 |
Tensile modulus | MPa | 820 ± 90 | 980 ± 100 | 968 ± 100 |
Charpy notched impact strength | kJ/m2 | 5.2 ± 0.1 | 5.0 ± 0.3 | 5.0 ± 0.3 |
Charpy impact strength | kJ/m2 | no break | no break | no break |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łątka, Ł.; Goc, K.; Kapusta, C.; Zapotoczny, S. Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes. Materials 2021, 14, 751. https://doi.org/10.3390/ma14040751
Łątka Ł, Goc K, Kapusta C, Zapotoczny S. Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes. Materials. 2021; 14(4):751. https://doi.org/10.3390/ma14040751
Chicago/Turabian StyleŁątka, Łukasz, Kamil Goc, Czesław Kapusta, and Szczepan Zapotoczny. 2021. "Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes" Materials 14, no. 4: 751. https://doi.org/10.3390/ma14040751
APA StyleŁątka, Ł., Goc, K., Kapusta, C., & Zapotoczny, S. (2021). Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes. Materials, 14(4), 751. https://doi.org/10.3390/ma14040751