Synthesis of Uniformly Sized Bi0.5Sb1.5Te3.0 Nanoparticles via Mechanochemical Process and Wet-Milling for Reduced Thermal Conductivity
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of BST NPs
2.2. Preparation of BST Nanocomposites
2.3. Characterization
3. Results and Discussion
3.1. Synthesis of Crystal-Pure, Uniformly Sized BST NPs
3.2. Thermal Conduction Properties of Bulk BST Nanocomposites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Kishore, R.A.; Priya, S. A review on low-grade thermal energy harvesting: Materials, methods and devices. Materials 2018, 11, 1433. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.L.; Zou, J.; Chen, Z.G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef] [PubMed]
- Bulman, G.; Barletta, P.; Lewis, J.; Baldasaro, N.; Manno, M.; Bar, C.A.; Yang, B. Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Kim, F.; Kwon, B.; Eom, Y.; Lee, J.E.; Park, S.; Jo, S.; Park, S.H.; Kim, B.S.; Im, H.J.; Lee, M.H.; et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 2018, 3, 301–309. [Google Scholar] [CrossRef]
- Varghese, T.; Dun, C.; Kempf, N.; Saeidi, J.M.; Karthik, C.; Richardson, J.; Hollar, C.; Estrada, D.; Zhang, Y. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering. Adv. Funct. Mater. 2020, 30. [Google Scholar] [CrossRef]
- Liu, B.; Hu, J.; Zhou, J.; Yang, R. Thermoelectric transport in nanocomposites. Materials 2017, 10, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.T.; Lightowlers, E.C.; Dean, P.J. Lattice vibration spectra of aluminum nitride. Phys. Rev. 1967, 158, 833. [Google Scholar] [CrossRef]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef] [Green Version]
- Snyder, G.J.; Christensen, M.; Nishibori, E.; Caillat, T.; Iversen, B.B. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 2004, 3, 458–463. [Google Scholar] [CrossRef]
- Takahata, K.; Iguchi, Y.; Tanaka, D.; Itoh, T.; Terasaki, I. Low thermal conductivity of the layered oxide (Na, Ca) Co2O4: Another example of a phonon glass and an electronic crystal. Phys. Rev. B 2000, 61. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, Z.; Liu, Y.; Wang, B.; Fang, L.; Qiu, J.; Zhang, K.; Wang, S. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Nat. Commun. 2018, 9, 3817. [Google Scholar] [CrossRef]
- Sarkar, S.; Zhang, X.; Hao, S.; Hua, X.; Bailey, T.P.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Dual alloying strategy to achieve a high thermoelectric figure of merit and lattice hardening in p-type nanostructured PbTe. ACS Energy Lett. 2018, 3, 2593–2601. [Google Scholar] [CrossRef]
- Minnich, A.J.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Li, J.F.; Liu, W.S.; Zhao, L.D.; Zhou, M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2010, 2, 152–158. [Google Scholar] [CrossRef]
- Sun, L.; Liao, B.; Sheberla, D.; Kraemer, D.; Zhou, J.; Stack, E.A.; Zakharov, D.; Stavila, V.; Talin, A.A.; Ge, Y.; et al. Microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity. Joule 2017, 1, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Hsin, C.L.; Tsai, Y.Y. Power conversion of hybrid Bi2Te3/Si thermoelectric nanocomposites. Nano Energy 2015, 11, 647–653. [Google Scholar] [CrossRef]
- Sankhla, A.; Patil, A.; Kamila, H.; Yasseri, M.; Farahi, N.; Mueller, E.; Boor, J. Mechanical alloying of optimized Mg2(Si,Sn) solid solutions: Understanding phase evolution and tuning synthesis parameters for thermoelectric applications. ACS Appl. Energy Mater. 2018, 1, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Guo, L.; Zhang, Z.; Lu, X.; Peng, K.; Yao, W.; Dai, J.; Wang, G.; Zhou, X. Sintering temperature dependence of thermoelectric performance in CuCrSe2 prepared via mechanical alloying. Scr. Mater. 2017, 127, 127–131. [Google Scholar] [CrossRef]
- Xu, C.; De, S.; Balu, A.M.; Ojeda, M.; Luque, R. Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem. Commun. 2015, 51, 6698–6713. [Google Scholar] [CrossRef]
- Ioannou, I.; Ioannou, P.S.; Delimitis, A.; Gelbstein, Y.; Giapintzakis, I.; Kyratsi, T. High thermoelectric performance of p-type half-Heusler (Hf,Ti)Co(Sb,Sn) solid solutions fabricated by mechanical alloying. J. Alloys Compd. 2021, 585. [Google Scholar] [CrossRef]
- Raphel, A.; Vivekanandhan, P.; Kumaran, S. High entropy phenomena induced low thermal conductivity in BiSbTe1.5Se1.5 thermoelectric alloy through mechanical alloying and spark plasma sintering. Mater. Lett. 2020, 269. [Google Scholar] [CrossRef]
- Balaz, P.; Achimovicova, M.; Balaz, M.; Billik, P.; Cherkezova-Zheleva, Z.; Manuel Criado, J.; Delogu, F.; Dutkova, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571–7637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Su, X.; Xie, H.; Shu, Y.; Liang, T.; She, X.; Liu, W.; Yan, Y.; Zhang, Q.; Uher, C.; et al. High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. Energy Environ. Sci. 2017, 10, 2638–2652. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Liu, G.; Shan, F. Achieving high power factor of p-type BiSbTe thermoelectric materials via adjusting hot-pressing temperature. Intermetallics 2018, 93, 338–342. [Google Scholar] [CrossRef]
- Shin, W.H.; Roh, J.W.; Ryu, B.; Chang, H.J.; Kim, H.S.; Lee, S.; Seo, W.S.; Ahn, K. Enhancing thermoelectric performances of bismuth antimony telluride via synergistic combination of multiscale structuring and band alignment by FeTe2 incorporation. ACS Appl. Mater. Interfaces 2018, 10, 3689–3698. [Google Scholar] [CrossRef]
- Kosmac, T.; Courtney, T.H. Milling and mechanical alloying of inorganic nonmetallics. J. Mater. Res. 1992, 7, 1519–1525. [Google Scholar] [CrossRef]
- Park, B.I.; Je, M.; Oh, J.; Choi, H.; Lee, S.Y. Rationally designed CuSb1-xBixS2 as a promising photovoltaic material: Theoretical and experimental study. Scr. Mater. 2020, 179, 107–112. [Google Scholar] [CrossRef]
- Park, B.I.; Hwang, Y.; Lee, S.Y.; Lee, J.S.; Park, J.K.; Jeong, J.; Kim, J.Y.; Kim, B.; Cho, S.H.; Lee, D.K. Solvent-free synthesis of Cu2ZnSnS4 nanocrystals: A facile, green, up-scalable route for low cost photovoltaic cells. Nanoscale 2014, 6, 11703–11711. [Google Scholar] [CrossRef]
- Datta, A.; Paul, J.; Kar, A.; Patra, A.; Sun, Z.; Chen, L.; Martin, J.; Nolas, G.S. Facile chemical synthesis of nanocrystalline thermoelectric alloys based on Bi-Sb-Te-Se. Cryst. Growth Des. 2010, 10, 3983–3989. [Google Scholar] [CrossRef]
- Tongpeng, S.; Sarakonsri, T.; Isoda, S.; Haruta, M.; Kurata, H.; Thanachavanont, C. Electron microscopy investigation of Sb2-xBixTe3 hexagonal crystal structure growth prepared from sol–gel method. Mater. Chem. Phys. 2015, 167, 246–252. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Z.; Li, Z.; Yu, L.; Khor, K.A.; Xiong, Q. Controlled growth of bismuth antimony telluride BixSb2−xTe3 nanoplatelets and their bulk thermoelectric nanocomposites. Nano Energy 2015, 15, 688–696. [Google Scholar] [CrossRef]
- Cao, L.; Deng, Y.; Gao, H.I.; Wang, Y.; Chen, X.; Zhu, Z. Towards high refrigeration capability: The controllable structure of hierarchical Bi0.5Sb1.5Te3 flakes on a metal electrode. Phys. Chem. Chem. Phys. 2015, 17, 6809–6818. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, E.; Wang, Y.; Zhang, C. Fabrication of Cu2ZnSnS4 (CZTS) nanoparticle inks for growth of CZTS films for solar cells. Nanomaterials 2019, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, T.; Althaf, R.; Babu, P.; Parida, K.M.; Vadivel, S.; Ashok, A.M. Visible light active LaFeO3 nano perovskite-RGO-NiO composite for efficient H2 evolution by photocatalytic water splitting and textile dye degradation. J. Environ. Chem. Eng. 2020, 3. [Google Scholar] [CrossRef]
- Hou, S.C.; Su, Y.F.; Chang, C.C.; Hu, C.W.; Chen, T.Y.; Yang, S.M.; Huang, J.L. The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery. J. Power Sources 2017, 349, 111–120. [Google Scholar] [CrossRef]
- Deng, R.; Su, X.; Zheng, Z.; Liu, W.; Yan, Y.; Zhang, Q.; Dravid, V.P.; Uher, C.; Kanatzidis, M.G.; Tang, X. Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Shin, W.H.; Kim, H.S.; Lee, K.; Roh, J.W.; Yoo, J.; Kim, J.I.; Kim, S.W.; Kim, S.I. Synergetic effect of grain size reduction on electronic and thermal transport properties by selectively-suppressed minority carrier mobility and enhanced boundary scattering in Bi0.5Sb1.5Te3 alloys. Script. Mater. 2019, 160, 15–19. [Google Scholar] [CrossRef]
Element | Additive Content (phr%) | TTI (s) |
---|---|---|
Bi | 20.0 | 13.1 |
Sb | 25.2 | 28.3 |
Te | 54.8 | 58.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.-I.; Shin, M.; Park, J.; Lee, J.-S.; Lee, S.Y.; Yu, S. Synthesis of Uniformly Sized Bi0.5Sb1.5Te3.0 Nanoparticles via Mechanochemical Process and Wet-Milling for Reduced Thermal Conductivity. Materials 2021, 14, 536. https://doi.org/10.3390/ma14030536
Park B-I, Shin M, Park J, Lee J-S, Lee SY, Yu S. Synthesis of Uniformly Sized Bi0.5Sb1.5Te3.0 Nanoparticles via Mechanochemical Process and Wet-Milling for Reduced Thermal Conductivity. Materials. 2021; 14(3):536. https://doi.org/10.3390/ma14030536
Chicago/Turabian StylePark, Bo-In, Miri Shin, Jaeho Park, Jae-Seung Lee, Seung Yong Lee, and Seunggun Yu. 2021. "Synthesis of Uniformly Sized Bi0.5Sb1.5Te3.0 Nanoparticles via Mechanochemical Process and Wet-Milling for Reduced Thermal Conductivity" Materials 14, no. 3: 536. https://doi.org/10.3390/ma14030536
APA StylePark, B.-I., Shin, M., Park, J., Lee, J.-S., Lee, S. Y., & Yu, S. (2021). Synthesis of Uniformly Sized Bi0.5Sb1.5Te3.0 Nanoparticles via Mechanochemical Process and Wet-Milling for Reduced Thermal Conductivity. Materials, 14(3), 536. https://doi.org/10.3390/ma14030536