Short-Term Material Characterization by Electrohydraulic Incremental Extrusion through Micro Channels
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Tensile Test Equivalent
3.2. Compression Test Equivalent
3.3. Shear Test Equivalent
3.4. Real Part Approximation
3.5. Cyclic Stress Test Equivalent
4. Conclusions
- different test equivalents were realized in the forming channel by single stages;
- single stages are combinable with low distance to realize multiaxial/production-related testing;
- single stages are combinable with increased distance to realize multi-stage cyclic testing;
- flow curve equivalents were determined for different test equivalents; and
- a cyclic stress test equivalent was validated by experiments and simulation.
5. Outlook
- the stress–strain stage sequence;
- the distance between stages; and
- the samples’ dimensions, material, and surface.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ellendt, N.; Mädler, L. High-Throughput Exploration of Evolutionary Structural Materials. HTM J. Heat Treat. Mat. 2018, 73, 3–12. [Google Scholar] [CrossRef]
- Imami Moqadam, S.; Mädler, L.; Ellendt, N. A high temperature drop-on-demand droplet generator for metallic melts. Micromachines 2019, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Ellendt, N.; Ciftci, N.; Goodreau, C.; Uhlenwinkel, V.; Mädler, L. Solidification of single droplets under combined cooling conditions. IOP Confer. Ser. Mater. Sci. Eng. 2016, 117. [Google Scholar] [CrossRef]
- Steinbacher, M.; Alexe, G.; Baune, M.; Bubrov, I.; Bösing, I.; Clausen, B.; Czotscher, T.; Epp, J.; Fischer, A.; Langstädtler, L.; et al. Descriptors for High Throughput in Structural Materials Development. High-Throughput 2019, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Hua, L.; Lan, J.A.; Wei, X. Studies of the deformation styles of the rubber-pad forming process used for manufacturing metallic bipolar plates. J. Power Sources 2010, 195, 8177–8184. [Google Scholar] [CrossRef]
- Langstädtler, L.; Schönemann, L.; Schenck, C.; Kuhfuss, B. Electromagnetic embossing of optical microstructures. ASME J. Micro Nano-Manuf. 2016, 4, 021001. [Google Scholar] [CrossRef]
- Merklein, M.; Allwood, J.M.; Behrens, B.-A.; Brosius, A.; Hagenah, H.; Kuzman, K.; Tekkaya, A.E. Bulk forming of sheet metal. Cirp Ann. 2012, 61, 725–745. [Google Scholar] [CrossRef]
- Vollertsen, F.; Friedrich, S.; Kuhfuß, B.; Maaß, P.; Thomy, C.; Zoch, H.-W. Introduction to Tooling. In Cold Micro Metal Forming; Springer: Bremen, Germany, 2020. [Google Scholar]
- Fan, W.F.; Li, F. Study on Blanking Force of Fine-Blanking with Negative Clearance and Common Blanking for AISI-1045 through Simulation and Experiment Methods. Mater. Sci. Forum 2011, 704, 1175–1179. [Google Scholar] [CrossRef]
- Mahshid, R.; Hansen, H.N.; Arentoft, M. Characterization of precision of handling system in high performance transfer press for micro forming. Manuf. Technol. 2014, 63, 497–500. [Google Scholar] [CrossRef]
- Sonnenberg, H.; Clausen, B. Short-Term Characterization of Spherical 100Cr6 Steel Samples Using Micro Compression Test. Materials 2020, 13, 733. [Google Scholar] [CrossRef] [PubMed]
- Langstädtler, L.; Pegel, H.; Schenck, C.; Stöbener, D.; Westerkamp, J.F.; Fischer, A.; Kuhfuss, B. Electrohydraulic Extrusion of Spherical Bronze (CuSn6) Micro Samples; Ohio State University: Columbus, OH, USA, 2018; Available online: https://core.ac.uk/download/pdf/159317635.pdf (accessed on 21 January 2021).
- Langstädtler, L.; Pegel, H.; Herrmann, M.; Schenck, C.; Kuhfuss, B. Electrohydraulic incremental bulk metal forming. MATEC Web Conf. 2018, 190, 03001. [Google Scholar] [CrossRef][Green Version]
- Langstädtler, L.; Pegel, H.; Beckschwarte, B.; Herrmann, M.; Schenck, C.; Kuhfuss, B. Flexible tooling for impulse forming. Procedia Manuf. 2019, 27, 130–137. [Google Scholar] [CrossRef]
- Langstädtler, L. Elektromagnetisches und Elektrohydraulisches Umformen in der Mikroproduktion. Master’s Thesis, University of Bremen, Bremen, Germany, 2020. [Google Scholar] [CrossRef]
- Available online: http://www.steelnumber.com/en/steel_alloy_composition_eu.php?name_id=1235 (accessed on 21 January 2021).
- Sterionow, P. Erweiterung der Formänderung von Stahlwerkstoffen bei der Hochgeschwindigkeitsumformung. Ph.D. Thesis, TU Munich, München, Germany, March 2018. [Google Scholar]
- Segal, V. Materials processing by simple shear. Mater. Sci. Eng. 1995, A197, 157–164. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T. An investigation of microstructural evolution during equal-channel angular pressing. Scr. Mater. 1997, 35, 4733–4741. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Wang, J.T.; Horita, Z.; Nemoto, M.; Langdon, T.G. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 1996, 35, 143–146. [Google Scholar] [CrossRef]
- Stöbener, D.; Alexe, A.; Langstädtler, L.; Herrmann, M.; Schenck, C.; Fischer, A. An optical method to determine the strain field on micro samples during electrohydraulic forming. Procedia CIRP 2020, 87, 438–443. [Google Scholar] [CrossRef]
Stress Equivalents: | Tensile σ′t | Compression σ′c | Shear τ′ | Real Part Approx. | Cyclic |
---|---|---|---|---|---|
initial sample diameter ds (mm) | 2.00, 0.80 | 1.50 | 2.00 | 2.00 | 0.79 |
initial die diameter di (mm) | 2.00 | 1.75 | 2.00 | dd1 = 2.00 dd2 = 3.60 | 1.00 |
extruded sample diameter de (mm) | 1.80, 0.70, 0.60 | 0.00 | 2.00 | 1.70 | 0.70 |
extrusion diameter dd (mm) | 1.85, 0.70, 0.60 | 0.00 | 2.00 | 1.70 | 0.70 |
gap distance hg (mm) | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
cut | axial | axial | radial | axial | axial |
radius R (mm) | 0.00; 1.00 | 0.00 | 0.00 | 1.00 | 1.00 |
die material | S355 | S355; hard. insert | S355 | S355; hard. insert | S355; hard. insert |
formed material | Al99.5, AlSi12 | Al99.5 | Al99.5 | Al99.5 | 100Cr6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langstädtler, L.; Schnabel, S.; Herrmann, M.; Schenck, C.; Kuhfuss, B. Short-Term Material Characterization by Electrohydraulic Incremental Extrusion through Micro Channels. Materials 2021, 14, 525. https://doi.org/10.3390/ma14030525
Langstädtler L, Schnabel S, Herrmann M, Schenck C, Kuhfuss B. Short-Term Material Characterization by Electrohydraulic Incremental Extrusion through Micro Channels. Materials. 2021; 14(3):525. https://doi.org/10.3390/ma14030525
Chicago/Turabian StyleLangstädtler, Lasse, Sebastian Schnabel, Marius Herrmann, Christian Schenck, and Bernd Kuhfuss. 2021. "Short-Term Material Characterization by Electrohydraulic Incremental Extrusion through Micro Channels" Materials 14, no. 3: 525. https://doi.org/10.3390/ma14030525
APA StyleLangstädtler, L., Schnabel, S., Herrmann, M., Schenck, C., & Kuhfuss, B. (2021). Short-Term Material Characterization by Electrohydraulic Incremental Extrusion through Micro Channels. Materials, 14(3), 525. https://doi.org/10.3390/ma14030525