Vortex Flow on the Surface Generated by the Onset of a Buoyancy-Induced Non-Boussinesq Convection in the Bulk of a Normal Liquid Helium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Method
2.2. Image Acquisition and PIV Measurements
3. Results and discussion
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics, Fluid Mechanics; Pergamon: New York, NY, USA, 1987; Volume 6. [Google Scholar]
- Walden, R.W.; Ahlers, G. Non-Boussinesq and penetrative convection in a cylindrical cell. J. Fluid Mech. 1981, 109, 89–114. [Google Scholar] [CrossRef]
- Ahlers, G.; Grossmann, S.; Lohse, D. Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection. Rev. Mod. Phys. 2009, 81, 503–537. [Google Scholar] [CrossRef] [Green Version]
- Roche, P.-E. The ultimate state of convection: A unifying picture of very high Rayleigh numbers experiments. New J. Phys. 2020, 22, 073056. [Google Scholar] [CrossRef]
- Moller, S.; Resagk, C.; Cierpka, C. Long-time experimental investigation of turbulent superstructures in Rayleigh–Bénard convection by non-invasive simultaneous measurements of temperature and velocity fields. Exp. Fluids 2021, 62, 1–19. [Google Scholar] [CrossRef]
- Chilla, F.; Schumacher, J. New perspectives in turbulent rayleigh-benard convection. Eur. Phys. J. E 2012, 35, 58–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemela, J.J.; Sreenivasan, K.R. The use of cryogenic helium for classical turbulence: Promises and hurdles. J. Low Temp. Phys. 2006, 143, 163–212. [Google Scholar] [CrossRef]
- Pel’menev, A.A.; Levchenko, A.A.; Mezhov-Deglin, L.P. Vortices on the surface of normal he i generated by the rayleigh–bénard thermogravitational convection in the bulk of a liquid. JETP Lett. 2019, 110, 551–556. [Google Scholar] [CrossRef]
- Pelmenev, A.A.; Levchenko, A.A.; Mezhov-Deglin, L.P. The evolution of vortices on the surface of normal He I. Low Temp. Phys. 2020, 46, 133–145. [Google Scholar] [CrossRef]
- Donnelly, R.J.; Barenghi, C.F. The Observed Properties of Liquid Helium at the Saturated Vapor Pressure. J. Phys. Chem. Ref. Data 1998, 27, 1217–1228. [Google Scholar] [CrossRef]
- Peshkov, V.P.; Borovikov, A.P. Measurement of the λ-transition temperature and density maximum of liquidHe-4. Sov. Phys. JETP 1966, 23, 559–565. [Google Scholar]
- Mezhov-Deglin, L.P. Kapitza Resistance at a Solid Helium-Copper Interface under Heavy Thermal Loads. In Quantum Fluids and Solids; Trickey, S.B., Adams, E.D., Dufty, J.W., Eds.; Springer: Boston, MA, USA, 1977. [Google Scholar] [CrossRef]
- Baudouy, B.; Four, A. Low temperature thermal conductivity of aluminium alloy 5056. Cryogenics 2014, 60, 1–4. [Google Scholar] [CrossRef]
- Kuznetsov, E.A.; Spektor, M.D. Weakly supercritical convection. J. Appl. Mech. Tech. Phys. 1980, 21, 220–228. [Google Scholar] [CrossRef]
- Levchenko, A.A.; Lebedeva, E.V.; Mezhov-Deglin, L.P.; Pelmenev, A.A. Self-organization of neutral particles on the surface of superfluid He-II. Low Temp. Phys. 2019, 45, 469–475. [Google Scholar] [CrossRef]
- Filatov, S.V.; Levchenko, A.A.; Brazhnikov, M.Y.; Mezhov-Deglin, L.P. A Technique for Registering Wave and Vortex Motions on a Liquid Surface. Instrum. Exp. Tech. 2018, 61, 757–760. [Google Scholar] [CrossRef]
- Falkovich, G.; Boffetta, G.; Shats, M.A.; Lanotte, A.S. Introduction to Focus Issue: Two-Dimensional Turbulence. Phys. Fluids 2017, 29, 110901–110902. [Google Scholar] [CrossRef]
- Filatov, S.; Levchenko, A.; Likhter, A.; Mezhov-Deglin, L. Quasi-adiabatic decay of vortex motion on the water surface. Mater. Lett. 2019, 254, 444–447. [Google Scholar] [CrossRef]
- Filatov, S.V.; Levchenko, A.A.; Mezhov-Deglin, L.P. Formation and decay of Vortex Motion on a Liquid Surface. JETP Lett. 2020, 11, 549–561. [Google Scholar] [CrossRef]
- Pelmenev, A.A.; Levchenko, A.A.; Mezhov-Deglin, L.P. The Rayleigh-Benard convection in the bulk and vortex flow on the surface of a normal liquid helium layer. In Proceedings of the 15th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Amsterdam, The Netherlands, 26–28 July 2021; pp. 2188–2192. [Google Scholar]
- Demuren, A.; Grotjans, H. Buoyancy-Driven Flows-Beyond the Boussinesq Approximation, Numerical Heat Transfer, Part B: Fundamentals. Int. J. Comput. Methodol. 2009, 56, 1–22. [Google Scholar] [CrossRef]
- Paolitto, G.; Greco, C.S.; Astartita, T.; Cardone, G. Experimental determination of the 3-D characteristic modes of turbulent Rayleigh-Benard convection in a cylinder. J. Fluid Mech. 2021, 932, A35. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelmenev, A.; Levchenko, A.; Mezhov-Deglin, L. Vortex Flow on the Surface Generated by the Onset of a Buoyancy-Induced Non-Boussinesq Convection in the Bulk of a Normal Liquid Helium. Materials 2021, 14, 7514. https://doi.org/10.3390/ma14247514
Pelmenev A, Levchenko A, Mezhov-Deglin L. Vortex Flow on the Surface Generated by the Onset of a Buoyancy-Induced Non-Boussinesq Convection in the Bulk of a Normal Liquid Helium. Materials. 2021; 14(24):7514. https://doi.org/10.3390/ma14247514
Chicago/Turabian StylePelmenev, Alexander, Alexander Levchenko, and Leonid Mezhov-Deglin. 2021. "Vortex Flow on the Surface Generated by the Onset of a Buoyancy-Induced Non-Boussinesq Convection in the Bulk of a Normal Liquid Helium" Materials 14, no. 24: 7514. https://doi.org/10.3390/ma14247514
APA StylePelmenev, A., Levchenko, A., & Mezhov-Deglin, L. (2021). Vortex Flow on the Surface Generated by the Onset of a Buoyancy-Induced Non-Boussinesq Convection in the Bulk of a Normal Liquid Helium. Materials, 14(24), 7514. https://doi.org/10.3390/ma14247514