Preparation of Activated Carbon Derived from Jordanian Olive Cake and Functionalized with Cu/Cu2O/CuO for Adsorption of Phenolic Compounds from Olive Mill Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent Preparation and Characterization
2.1.1. Preparation of Activated Carbon (AC)
2.1.2. Functionalization of AC with Cu/Cu2O/CuO
2.1.3. Characterization of Activated Carbon Samples
2.2. Olive Mill Wastewater (Adsorbate)
2.3. Total Phenol Determination
2.4. Adsorption Experiments for Ox-AC/C/Cu2O/CuO
2.4.1. Influence of the Adsorbent Concentration
2.4.2. Influence of the pH
2.4.3. Influence of Initial TPC
2.4.4. Influence of Temperature
2.4.5. Influence of Ionic Strength
2.5. Modeling of Thermodynamic, Kinetic and Adsorption Isotherms
3. Results and Discussion
3.1. Characterization of Activated Carbon
3.1.1. Scanning Electron Microscopy Coupled with Dispersive X-ray Spectroscopy (SEM-EDS) Characterization
3.1.2. Surface Area and Porosity Determination
3.1.3. Fourier Transform Infrared Spectroscopy (FTIR) Characterization
3.1.4. Point of Zero Charge (pHpzc)
3.1.5. X-ray Diffraction Pattern (XRD)
3.2. Treatment of OMW Using Ox-AC/Cu/Cu2O/CuO Adsorbent
3.2.1. Influence of Adsorbent Dose
3.2.2. Influence of Contact Time and Initial TPC Concentration
3.2.3. Influence of the pH
3.2.4. Influence of Ionic Strength
3.2.5. Influence of Temperature and Evaluation of Thermodynamic Parameters
3.3. Kinetic Study and Reaction Best Adequate Model
3.4. Adsorption Isotherm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oreopoulou, V.; Russ, W. Utilization of by-Products and Treatment of Waste in the Food Industry, 1st ed.; Springer: New York, NY, USA, 2007; pp. 209–232. [Google Scholar]
- Niaounakis, M.; Halvadakis, C.P. Olive Processing Waste Management: Literature Review and Patent Survey, 2nd ed.; Elsevier: London, UK, 2006. [Google Scholar]
- Paraskeva, P.; Diamadopoulos, E. Technologies for olive mill wastewater (OMW) treatment: A review. J. Chem. Technol. Biotechnol. 2006, 81, 1475–1485. [Google Scholar] [CrossRef]
- Wong, S.; Ngadi, N.; Inuwa, I.M.; Hassan, O. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. J. Clean. Prod. 2018, 175, 361–375. [Google Scholar] [CrossRef]
- Cimino, G.; Cappello, R.M.; Caristi, C.; Toscano, G. Characterization of carbons from olive cake by sorption of wastewater pollutants. Chemosphere 2005, 61, 947–955. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energ. Rev. 2005, 11, 1966–2005. [Google Scholar] [CrossRef]
- Choudhury, S.B.; Banerjee, D.K.; Dutta, A.C.; Mazumdar, S.; Ray, A.K.; Prasad, M. Production of active carbon from indigenous materials. Fuel Sci. Technol. 1985, 4, 129–133. [Google Scholar]
- López-González, J.D.D.; Martinez-Vilchez, F.; Rodriguez-Reinoso, F. Preparation and characterization of active carbons from olive stones. Carbon 1980, 18, 413–418. [Google Scholar] [CrossRef]
- Baccar, R.; Bouzid, J.; Feki, M.; Montiel, A. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J. Hazard. Mater. 2009, 162, 1522–1529. [Google Scholar] [CrossRef]
- Molina-Sabio, M.; Rodriguez-Reinoso, F.; Caturla, F.; Sellés, M.J. Porosity in granular carbons activated with phosphoric acid. Carbon 1995, 33, 1105–1113. [Google Scholar] [CrossRef]
- Chuah, T.G.; Jumasiah, A.; Azni, I.; Katayon, S.; Choong, S.T. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview. Desalination 2005, 175, 305–316. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.T.; El-Chaghaby, G.A.; ElGammal, M.H.; Rawash, E.S.A. Optimizing the preparation conditions of activated carbons from olive cake using KOH activation. New Carbon Mater. 2016, 31, 492–500. [Google Scholar] [CrossRef]
- Aljundi, I.H.; Jarrah, N. A study of characteristics of activated carbon produced from Jordanian olive cake. J. Anal. Appl. Pyrolysis 2008, 81, 33–36. [Google Scholar] [CrossRef]
- Michailof, C.; Stavropoulos, G.G.; Panayiotou, C. Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons. Bioresour. Technol. 2008, 99, 6400–6408. [Google Scholar] [CrossRef]
- Mameri, N.; Aioueche, F.; Belhocine, D.; Grib, H.; Lounici, H.; Piron, D.L.; Yahiat, Y. Preparation of activated carbon from olive mill solid residue. J. Chem. Technol. Biotechnol. 2000, 75, 625–631. [Google Scholar] [CrossRef]
- Baccar, R.; Blánquez, P.; Bouzid, J.; Feki, M.; Sarrà, M. Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chem. Eng. J. 2010, 165, 457–464. [Google Scholar] [CrossRef]
- Baçaoui, A.; Yaacoubi, A.; Dahbi, A.; Bennouna, C.; Luu, R.P.T.; Maldonado-Hodar, F.J.; Rivera-Utrilla, J.; Moreno-Castilla, C. Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon 2001, 39, 425–432. [Google Scholar] [CrossRef]
- Rashid, J.; Tehreem, F.; Rehman, A.; Kumar, R. Synthesis using natural functionalization of activated carbon from pumpkin peels for decolourization of aqueous methylene blue. Sci. Total Environ. 2019, 671, 369–376. [Google Scholar] [CrossRef]
- Berber, M.R. Surface-functionalization of activated carbon with polyglucosamine polymer for efficient removal of cadmium ions. Polym. Compos. 2020, 41, 3074–3086. [Google Scholar] [CrossRef]
- Mines, P.D.; Thirion, D.; Uthuppu, B.; Hwang, Y.; Jakobsen, M.H.; Andersen, H.R.; Yavuz, C.T. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up. Chem. Eng. J. 2017, 309, 766–771. [Google Scholar] [CrossRef] [Green Version]
- Babu, C.M.; Binnemans, K.; Roosen, J. Ethylenediaminetriacetic acid-functionalized activated carbon for the adsorption of rare earths from aqueous solutions. Ind. Eng. Chem. Res. 2018, 57, 1487–1497. [Google Scholar] [CrossRef]
- Lv, D.; Liu, Y.; Zhou, J.; Yang, K.; Lou, Z.; Baig, S.A.; Xu, X. Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb (II) and Cu (II) removal from aqueous solutions. Appl. Surf. Sci. 2018, 428, 648–658. [Google Scholar] [CrossRef]
- Tran, H.N.; Huang, F.C.; Lee, C.K.; Chao, H.P. Activated carbon derived from spherical hydrochar functionalized with triethylenetetramine: Synthesis, characterizations, and adsorption application. Green Process. Synth. 2017, 6, 565–576. [Google Scholar] [CrossRef]
- El-Shafey, E.I.; Ali, S.N.; Al-Busafi, S.; Al-Lawati, H.A. Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal. J. Environ. Chem. Eng. 2016, 4, 2713–2724. [Google Scholar] [CrossRef]
- Ghasemi, M.; Mashhadi, S.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for Malachite green dye. J. Mol. Liq. 2016, 213, 317–325. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Ning, P.; Liu, W.; Wang, F.; Ma, Y. Selective adsorption of CH3SH on cobalt-modified activated carbon with low oxygen concentration. J. Taiwan Inst. Chem. Eng. 2017, 75, 156–163. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W.; Zhang, J.; Zhang, C.; Ren, L.; Li, Y. Removal of cephalexin from aqueous solutions by original and Cu (II)/Fe (III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies. J. Hazard. Mater. 2011, 185, 1528–1535. [Google Scholar] [CrossRef]
- Moreno-Piraján, J.C.; Tirano, J.; Salamanca, B.; Giraldo, L. Activated Carbon Modified with Copper for Adsorption of Propanethiol. Int. J. Mol. Sci. 2010, 11, 927–942. [Google Scholar] [CrossRef] [Green Version]
- Lei, B.; Liu, B.; Zhang, H.; Yan, L.; Xie, H.; Zhou, G. CuO-modified activated carbon for the improvement of toluene removal in air. J. Environ. Sci. 2020, 88, 122–132. [Google Scholar] [CrossRef]
- Arianto, B.; Setianingsih, T.; Rumhayati, B. Modification of activated carbon from coconut shell charcoal with copper (CuCl2/AC, Cu (OH) 2/AC, CuO/AC) for adsorption of paracetamol contaminant. Pure Appl. Chem. 2019, 8, 117–125. [Google Scholar] [CrossRef]
- Yu, Q.; Yi, H.; Tang, X.; Ning, P.; Yang, L. Study of PH3 Adsorption and Regeneration over CuO-ZnO-La2O3/Activated Carbon Adsorbents. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Stavropoulos, G.G.; Zabaniotou, A.A. Production and characterization of activated carbons from olive-seed waste residue. Microporous Mesoporous Mater. 2005, 82, 79–85. [Google Scholar] [CrossRef]
- Abdelnabi, J. Coupling Magnetite Nanoparticles with Sorbent Material(s) for Olive Mill Wastewater Remediation. Master’s Thesis, Jordan University of Science and Technology, Irbid, Jordan, July 2019. [Google Scholar]
- Ruiz-Méndez, M.V.; Romero, C.; Medina, E.; García, A.; de Castro, A.; Brenes, M. Acidification of Alperujo paste prevents off-odors during their storage in open air. J. Am. Oil. Chem. Soc. 2013, 90, 401–406. [Google Scholar] [CrossRef]
- Wang, L.; Wang, A. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite. J. Hazard. Mater. 2008, 160, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Yuh-Shan, H. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004, 59, 171–177. [Google Scholar] [CrossRef]
- El Qada, E.N.; Allen, S.J.; Walker, G.M. Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chem. Eng. J. 2006, 124, 103–110. [Google Scholar] [CrossRef]
- Al-Duri, B.; Yong, Y.P. Lipase immobilisation: An equilibrium study of lipases immobilised on hydrophobic and hydrophilic/hydrophobic supports. Biochem. Eng. J. 2000, 4, 207–215. [Google Scholar] [CrossRef]
- Liu, Q.S.; Zheng, T.; Wang, P.; Jiang, J.P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Khan, T.A.; Khan, E.A. Adsorptive uptake of basic dyes from aqueous solution by novel brown linseed deoiled cake activated carbon: Equilibrium isotherms and dynamics. J. Environ. Chem. Eng. 2016, 4, 3084–3095. [Google Scholar] [CrossRef]
- Zdravkov, B.; Čermák, J.; Šefara, M.; Janků, J. Pore classification in the characterization of porous materials: A perspective. Open Chem. J. 2007, 5, 385–395. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Sun, D. TPO–TPD study of an activated carbon-supported copper catalyst–sorbent used for catalytic dry oxidation of phenol. J. Catal. 2004, 227, 297–303. [Google Scholar] [CrossRef]
- Mistry, B.D. A Handbook of Spectroscopic Data, 1st ed.; Oxford Book Company: Jaipur, India, 2009. [Google Scholar]
- Wang, X.; Zhang, F.; Xia, B.; Zhu, X.; Chen, J.; Qiu, S.; Zhang, P.; Li, J. Controlled modification of multi-walled carbon nanotubes with CuO, Cu2O and Cu nanoparticles. Solid State Sci. 2009, 11, 655–659. [Google Scholar] [CrossRef]
- Yeddou, A.R.; Chergui, S.; Chergui, A.; Halet, F.; Hamza, A.; Nadjemi, B.; Ould-Dris, A.; Belkouch, J. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon. Miner. Eng. 2011, 24, 788–793. [Google Scholar] [CrossRef]
- Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F. Shriver & Atkin’s Inorganic Chemistry, 4th ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Deka, J.R.; Lee, M.H.; Saikia, D.; Kao, H.M.; Yang, Y.C. Confinement of Cu nanoparticles in the nanocages of large pore SBA-16 functionalized with carboxylic acid: Enhanced activity and improved durability for 4-nitrophenol reduction. Dalton Trans. 2019, 48, 8227–8237. [Google Scholar] [CrossRef]
- Alhumaimess, M.S.; Essawy, A.A.; Kamel, M.M.; Alsohaimi, I.H.; Hassan, H.M.A. Biogenic-Mediated Synthesis of Mesoporous Cu2O/CuO Nano-Architectures of Superior Catalytic Reductive towards Nitroaromatics. Nanomaterials 2020, 10, 781. [Google Scholar] [CrossRef] [Green Version]
- Pasinszki, T.; Krebsz, M.; Lajgut, G.G.; Kocsis, T.; Kótai, L.; Kauthale, S.; Tekale, S.; Pawar, R. Copper nanoparticles grafted on carbon microspheres as novel heterogeneous catalysts and their application for the reduction of nitrophenol and one-pot multicomponent synthesis of hexahydroquinolines. New J. Chem. 2018, 42, 1092–1098. [Google Scholar] [CrossRef] [Green Version]
- Al Bsoul, A.; Hailat, M.; Abdelhay, A.; Tawalbeh, M.; Jum’h, I.; Bani-Melhem, K. Treatment of olive mill effluent by adsorption on titanium oxide nanoparticles. Sci. Total Environ. 2019, 688, 1327–1334. [Google Scholar] [CrossRef]
- Anwar, J.; Shafique, U.; Salman, M.; Dar, A.; Anwar, S. Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresour. Technol. 2010, 101, 1752–1755. [Google Scholar] [CrossRef]
- Al-Asheh, S.; Banat, F.; Abu-Aitah, L. Adsorption of phenol using different types of activated bentonites. Sep. Purif. Technol. 2003, 33, 1–10. [Google Scholar] [CrossRef]
- Lin, K.; Pan, J.; Chen, Y.; Cheng, R.; Xu, X. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J. Hazard. Mater. 2009, 161, 231–240. [Google Scholar] [CrossRef]
- Habbache, N.; Alane, N.; Djerad, S.; Tifouti, L. Leaching of copper oxide with different acid solutions. Chem. Eng. J. 2009, 152, 503–508. [Google Scholar] [CrossRef]
- Dortwegt, R.; Maughan, E.V. The chemistry of copper in water and related studies planned at the advanced photon source. In Proceedings of the 2001 Particle Accelerator Conference (Cat. No. 01CH37268), PACS2001, Chicago, IL, USA, 18–22 June 2001; Volume 2, pp. 1456–1458. [Google Scholar]
- Jabbari, M. Solvent dependence of protonation equilibria for gallic acid in water and different acetonitrile–water cosolvent systems. J. Mol. Liq. 2015, 208, 5–10. [Google Scholar] [CrossRef]
- Das, R.C.; Dash, U.N.; Panda, K.N. Thermodynamics of the dissociation of trans-cinnamic acid. Can. J. Chem. 1976, 54, 1916–1917. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 689043, Caffeic Acid. 2021. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Caffeic-acid (accessed on 3 August 2021).
- Yousef, R.I.; El-Eswed, B. The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite. Colloids Surf. A Physicochem. Eng. Asp. 2009, 334, 92–99. [Google Scholar] [CrossRef]
- Lazo-Cannata, J.C.; Nieto-Márquez, A.; Jacoby, A.; Paredes-Doig, A.L.; Romero, A.; Sun-Kou, M.R.; Valverde, J.L. Adsorption of phenol and nitrophenols by carbon nanospheres: Effect of pH and ionic strength. Sep. Purif. Technol. 2011, 80, 217–224. [Google Scholar] [CrossRef]
- Weil, K.G.; Jaycock, M.J.; Parfitt, G.D. Chemistry of Interfaces; Ellis Horwood Limited Publishers: Chichester, UK, 1981; p. 718. [Google Scholar]
- Zarrok, H.; Zarrouk, A.; Salghi, R.; Assouag, M.; Hammouti, B.; Oudda, H.; Boukhris, S.; Al Deyab, S.S.; Warad, I. Inhibitive properties and thermodynamic characterization of quinoxaline derivative on carbon steel corrosion in acidic medium. Der Pharm. Lett. 2013, 5, 43–53. [Google Scholar]
- Kara, M.; Yuzer, H.; Sabah, E.; Celik, M.S. Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 2003, 37, 224–232. [Google Scholar] [CrossRef]
- Hanaor, D.A.; Ghadiri, M.; Chrzanowski, W.; Gan, Y. Scalable surface area characterization by electrokinetic analysis of complex anion adsorption. Langmuir 2014, 30, 15143–15152. [Google Scholar] [CrossRef]
Sample | Element % | |||||
---|---|---|---|---|---|---|
Carbon | Oxygen | Silicon | Potasium | Calcium | Copper | |
Parent AC | 82.4 | 7.3 | 0.9 | 2.8 | 6.6 | - |
Ox-AC | 75.3 | 22.1 | 2.7 | - | - | - |
Ox-AC/CuO | 66.2 | 1.4 | 0.5 | - | - | 31.9 |
Sample | Surface Area (m2/g) | Total Pore Volume (cc/g) | Pore Diameter (nm) |
---|---|---|---|
Parent AC | 697 | 0.414 | 2.38 |
Ox-AC | 19 | 0.018 | 3.76 |
Ox-AC/Cu/Cu2O/CuO | 422 | 0.235 | 2.23 |
TPC0 (mg/L) | T(K) | Kc | ∆G° (kJ/mol) | ∆S° (kJ mol−1K−1) | ∆H° (kJ mol−1) |
---|---|---|---|---|---|
124 | 293 | 2.06 | −1.765 | 0.109 | 30.104 |
302 | 3.10 | −2.839 | |||
311 | 4.22 | −3.723 |
TPC0 (mg/L) | First-Order Model | Second-Order Model | Intraparticle Diffusion Model | ||||||
---|---|---|---|---|---|---|---|---|---|
k1 (h−1) | R2 | ERRSQ | K2 (mg/g·h) | R2 | ERRSQ | Kp (mg/g·h0.5) | R2 | ERRSQ | |
124 | 0.18 | 0.9858 | 0.9 × 10−2 | 1.83 | 0.9947 | 1.4 × 10−3 | 1.80 | 0.9911 | 6.1 × 10−2 |
93 | 0.17 | 0.9624 | 2.4 × 10−2 | 3.36 | 0.997 | 1.2 × 10−3 | 0.91 | 0.9642 | 6.4 × 10−2 |
62 | 0.35 | 0.9878 | 3.2 × 10−2 | 4.10 | 0.9986 | 1.0 × 10−3 | 0.67 | 0.9776 | 2.1 × 10−2 |
Adsorption Temperature (K) | Freundlich Isotherm | Langmuir Isotherm | ||||||
---|---|---|---|---|---|---|---|---|
KF | n | R2 | ERRSQ | Qm | b | R2 | ERRSQ | |
311 | 2.7 | 2.4 | 0.9749 | 4.3 × 10−3 | 13.9 | 0.11 | 0.9984 | 5.1 × 10−6 |
302 | 2.2 | 2.4 | 0.9948 | 8.2 × 10−4 | 12.7 | 0.09 | 0.9994 | 1.8 × 10−6 |
293 | 2.8 | 3.3 | 0.9801 | 2.2 × 10−3 | 9.9 | 0.13 | 0.9999 | 4.0 × 10−8 |
Parameter | Raw OMW | Reading after Oxidation and Filtration | Reading after Treatment with Ox-AC/Cu/Cu2O/CuO |
---|---|---|---|
pH | 5.5 | 2.3 | 6.1 |
TPC (mg/L) | 150 | 124 | 22 |
COD (g/L) | 83 | 65 | 48 |
TSS (g/L) | 20.67 | 4.41 | 2.32 |
TDS (mg/L) | 8630 | 8350 | 1004 |
Density (g/mL) | 1.015 | 1.008 | 1.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Dalo, M.; Abdelnabi, J.; Bawab, A.A. Preparation of Activated Carbon Derived from Jordanian Olive Cake and Functionalized with Cu/Cu2O/CuO for Adsorption of Phenolic Compounds from Olive Mill Wastewater. Materials 2021, 14, 6636. https://doi.org/10.3390/ma14216636
Abu-Dalo M, Abdelnabi J, Bawab AA. Preparation of Activated Carbon Derived from Jordanian Olive Cake and Functionalized with Cu/Cu2O/CuO for Adsorption of Phenolic Compounds from Olive Mill Wastewater. Materials. 2021; 14(21):6636. https://doi.org/10.3390/ma14216636
Chicago/Turabian StyleAbu-Dalo, Muna, Jehad Abdelnabi, and Abeer Al Bawab. 2021. "Preparation of Activated Carbon Derived from Jordanian Olive Cake and Functionalized with Cu/Cu2O/CuO for Adsorption of Phenolic Compounds from Olive Mill Wastewater" Materials 14, no. 21: 6636. https://doi.org/10.3390/ma14216636
APA StyleAbu-Dalo, M., Abdelnabi, J., & Bawab, A. A. (2021). Preparation of Activated Carbon Derived from Jordanian Olive Cake and Functionalized with Cu/Cu2O/CuO for Adsorption of Phenolic Compounds from Olive Mill Wastewater. Materials, 14(21), 6636. https://doi.org/10.3390/ma14216636