Antimicrobial Activity of a Novel Cu(NO3)2-Containing Sol–Gel Surface under Different Testing Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sol–Gel Components
2.2. Release Experiments on Sol–Gel Components
2.3. Scanning Electron Micrographs of the Layers
2.4. Atomic Force Microscopy for Surface Characterization
2.5. Washability Testing
2.6. X-ray Photoelectron Spectroscopy
2.7. FTIR Measurements
2.8. Testing of Antibacterial Activity
2.8.1. Modified ISO 22196 (JIS Z 2801)
2.8.2. Dry Assessment of Antibacterial Activity
2.8.3. Impact of Soiling on Antibacterial Activity
2.8.4. Impact of Repeated Use on Antibacterial Activity
2.9. Statistical Analyses
3. Results
3.1. Characterization of the Coatings
3.1.1. Mechanism of Coating Formation
3.1.2. SEM Images of the Coatings
3.1.3. AFM Characterization of the Coatings
3.1.4. Washability Testing
3.1.5. XPS Depth Profile Investigations
3.1.6. FTIR Measurements
3.1.7. Release Behavior of Sol–Gel Coatings
3.1.8. Results of Testing According to ISO 22196
3.1.9. Impact of Soil Load on Antibacterial Activity
3.1.10. Impact of a Repeated Use on Antibacterial Activity
3.1.11. Results of Testing Using a Dry Assessment
3.1.12. Impact of Soil on Antibacterial Activity in a Dry Assessment
3.1.13. Impact of Repeated Use on Antibacterial Activity in a Dry Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Troko, J.; Myles, P.; Gibson, J.; Hashim, A.; Enstone, J.; Kingdon, S.; Packham, C.; Amin, S.; Hayward, A.; Van-Tam, J.N. Is public transport a risk factor for acute respiratory infection? BMC Infect. Dis. 2011, 11, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Gorman, J.; Humphreys, H. Application of copper to prevent and control infection. where are we now? J. Hosp. Infect. 2012, 81, 217–223. [Google Scholar] [CrossRef]
- Villapun, V.M.; Dover, L.G.; Cross, A.; Gonzalez, S. Antibacterial metallic touch surfaces. Materials 2016, 9, 736. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, J.K.; Tofern, S.; Kunz, W.; Schütze, S.; Riecke, M.; Solbach, W.; Wuske, T. “Life-like” assessment of antimicrobial surfaces by a new touch transfer assay displays strong superiority of a copper alloy compared to silver containing surfaces. PLoS ONE 2017, 12, e0187442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, R.M.; Bentz, M.L.; Shams, A.; Houston, H.; Lyons, A.; Rose, L.J.; Litvintseva, A.P. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast candida auris on a plastic health care surface. J. Clin. Microbiol. 2017, 55, 2996–3005. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.M.; Johani, K.; Melo, D.S.; Lopes, L.K.O.; Lopes Lima, L.K.O.; Tipple, A.F.V.; Hu, H.; Vickery, K. Biofilm contamination of high-touched surfaces in intensive care units: Epidemiology and potential impacts. Lett. Appl. Microbiol. 2019, 68, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozanska, A.; Chmielarczyk, A.; Romaniszyn, D.; Majka, G.; Bulanda, M. Antimicrobial effect of copper alloys on acinetobacter species isolated from infections and hospital environment. Antimicrob. Resist. Infect. Control 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Adlhart, C.; Verran, J.; Azevedo, N.F.; Olmez, H.; Keinänen-Toivola, M.M.; Gouveia, I.; Melo, L.F.; Crijns, F. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. J. Hosp. Infect. 2018, 99, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Dancer, S.J. Controlling hospital-acquired infection: Focus on the role of the environment and new technologies for decontamination. Clin. Microbiol. Rev. 2014, 27, 665–690. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, H. Self-disinfecting and microbiocide-impregnated surfaces and fabrics: What potential in interrupting the spread of healthcare-associated infection? Clin. Infect. Dis. 2014, 58, 848–853. [Google Scholar] [CrossRef]
- Espirito Santo, C.; Lam, E.W.; Elowsky, C.G.; Quaranta, D.; Domaille, D.W.; Chang, C.J.; Grass, G. Bacterial killing by dry metallic copper surfaces. Appl. Environ. Microbiol. 2011, 77, 794–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglielmi, M.; Martucci, A. Sol–Gel nanocomposites. In Handbook of Sol–Gel Science and Technology, 1st ed.; Klein, L., Aparicio, M., Jitianu, A., Eds.; Springer International Publishing: Cambridge, UK, 2016; pp. 1–23. [Google Scholar] [CrossRef]
- Rose, K. Hybrid sol–gel derived coatings for glass and plastic surfaces. Vakuum 2001, 13, 244–249. [Google Scholar] [CrossRef]
- Arkles, B. Commercial applications of sol–gel-derived hybrid materials. MRS Bull. 2001, 26, 402. [Google Scholar] [CrossRef]
- Sepeur, S.; Laryea, N.; Goedicke, S.; Groß, F. Nanotechnologie; Vincentz Network: Hannover, Germany, 2008. [Google Scholar] [CrossRef]
- Jonschker, G. Sol–Gel-Technology in Praxis, 1st ed.; Vincentz Network: Hannover, Germany, 2014. [Google Scholar]
- Campos, M.D.; Zucchi, P.C.; Phung, A.; Leonard, S.N.; Hirsch, E.B. The activity of antimicrobial surfaces varies by testing protocol utilized. PLoS ONE 2016, 11, e0160728. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Imai, S.; Kourai, H. Background and evidence leading to the establishment of the JIS standard for antimicrobial products. Biocontrol Sci. 2006, 11, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Bruhwasser, C.; Heinrich, H.; Lass-Florl, C.; Mayr, A. Self-disinfecting surfaces and activity against staphyloccocus aureus ATCC 6538 under real-life conditions. J. Hosp. Infect. 2017, 97, 196–199. [Google Scholar] [CrossRef]
- Wiegand, C.; Volpel, A.; Ewald, A.; Remesch, M.; Kuever, J.; Bauer, J.; Griesheim, S.; Hauser, C.; Thielmann, J.; Tonndorf-Martini, S.; et al. Critical physiological factors influencing the outcome of antimicrobial testing according to ISO 22196/JIS Z 2801. PLoS ONE 2018, 13, e0194339. [Google Scholar] [CrossRef] [Green Version]
- Redfern, J.; Tucker, J.; Simmons, L.M.; Askew, P.; Stephan, I.; Verran, J. Environmental and experimental factors affecting efficacy testing of nonporous plastic antimicrobial surfaces. Methods Protoc. 2018, 1, 36. [Google Scholar] [CrossRef] [Green Version]
- Beier, O.; Pfuch, A.; Horn, K.; Weisser, J.; Schnabelrauch, M.; Schimanski, A. Low temperature deposition of antibacterially active silicon oxide layers containing silver nanoparticles, prepared by atmospheric pressure plasma chemical vapor deposition. Plasma Processes Polym. 2013, 10, 77–87. [Google Scholar] [CrossRef]
- Xu, J.; Henning, A.; Pfuch, A.; Schmidt, J.; Kretzschmar, B.S.M.; Grünler, B.; Lampke, T. Adhesive metallization on carbon-fiber-reinforced polymer (CFRP) by cold plasma spraying. Metall 2021, 11–12. [Google Scholar]
- Palenta, T.; Kriltz, A.; Rüffer, P.; Heft, A.; Grünler, B. Characterization of corrosion effects on float glass coated by CCVD. Surf. Coat. Technol. 2013, 232, 742–746. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Interim Method for Evaluating the Efficacy of Antimicrobial Surface Coatings; US Environmental Protection Agency: Washington, DC, USA, 2020. [Google Scholar]
- Gerullis, S.; Pfuch, A.; Spange, S.; Kettner, F.; Plaschkies, K.; Küzün, B.; Kosmachev, K.V.; Volotikin, G.G.; Grünler, B. Thin antimicrobial silver, copper or zinc containing SiOx films on wood polymer composites (WPC) applied by atmospheric pressure plasma chemical vapour deposition (APCVD) and sol–gel technology. Eur. J. Wood Wood Prod. 2018, 76, 229–241. [Google Scholar] [CrossRef]
- Giuffre, M.; Cipolla, D.; Bonura, C.; Geraci, D.M.; Aleo, A.; di Noto, S.; Nociforo, F.; Corsello, G.; Mammina, C. Outbreak of colonizations by extended-spectrum beta-lactamase-producing escherichia coli sequence type 131 in a neonatal intensive care unit, italy. Antimicrob. Resist. Infect. Control 2013, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, J.M.; Potter-Bynoe, G.; Chenevert, C.; King, T. Environmental contamination due to methicillin-resistant staphylococcus aureus: Possible infection control implications. Infect. Control Hosp. Epidemiol. 1997, 18, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Page, K.; Wilson, M.; Parkin, I.P. Antimicrobial surfaces and their potential in reducing the role of the inanimateenvironment in the incidence of hospital-acquired infections. J. Mater. Chem. 2009, 19, 3819–3831. [Google Scholar] [CrossRef]
- Haase, H.; Jordan, L.; Keitel, L.; Keil, C.; Mahltig, B. Comparison of methods for determining the effectiveness of antibacterial functionalized textiles. PLoS ONE 2017, 12, e0188304. [Google Scholar]
- Santo, C.E.; Morais, P.V.; Grass, G. Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl. Environ. Microbiol. 2010, 76, 1341–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michels, H.T.; Noyce, J.O.; Keevil, C.W. Effects of temperature and humidity on the efficacy of methicillin-resistant staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett. Appl. Microbiol. 2009, 49, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Noyce, J.O.; Michels, H.; Keevil, C.W. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant staphylococcus aureus in the healthcare environment. J. Hosp. Infect. 2006, 63, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.; Morin, V.N.; Rodger, H.J.; Holah, J.; Bird, C. Do european standard disinfectant tests truly simulate in-use microbial and organic soiling conditions on food preparation surfaces? J. Appl. Microbiol. 2010, 108, 1344–1351. [Google Scholar] [CrossRef]
- Airey, P.; Verran, J. Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning. J. Hosp. Infect. 2007, 67, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Noyce, J.O.; Michels, H.; Keevil, C.W. Use of copper cast alloys to control escherichia coli O157 cross-contamination during food processing. Appl. Environ. Microbiol. 2006, 72, 4239–4244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojeil, M.; Jermann, C.; Holah, J.; Denyer, S.P.; Maillard, J.Y. Evaluation of new in vitro efficacy test for antimicrobial surface activity reflecting UK hospital conditions. J. Hosp. Infect. 2013, 85, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toplitsch, D.; Lackner, J.M.; Schwan, A.M.; Hinterer, A.; Stögmüller, P.; Horn, K.; Fritzlar, N.; Pfuch, A.; Kittinger, C. Antimicrobial Activity of a Novel Cu(NO3)2-Containing Sol–Gel Surface under Different Testing Conditions. Materials 2021, 14, 6488. https://doi.org/10.3390/ma14216488
Toplitsch D, Lackner JM, Schwan AM, Hinterer A, Stögmüller P, Horn K, Fritzlar N, Pfuch A, Kittinger C. Antimicrobial Activity of a Novel Cu(NO3)2-Containing Sol–Gel Surface under Different Testing Conditions. Materials. 2021; 14(21):6488. https://doi.org/10.3390/ma14216488
Chicago/Turabian StyleToplitsch, Daniela, Jürgen Markus Lackner, Alexander Michael Schwan, Andreas Hinterer, Philipp Stögmüller, Kerstin Horn, Natalie Fritzlar, Andreas Pfuch, and Clemens Kittinger. 2021. "Antimicrobial Activity of a Novel Cu(NO3)2-Containing Sol–Gel Surface under Different Testing Conditions" Materials 14, no. 21: 6488. https://doi.org/10.3390/ma14216488