Effect of Tensile Stress on the Oxide Properties of a Nickel-Based Alloy 600 in Simulated PWR Secondary Water
Abstract
:1. Introduction
2. Experimental Methods
2.1. Test Material
2.2. Immersion Test for Oxide Formation
2.3. Characterization of Oxide Films
2.4. Electrochemical Measurements
3. Results
3.1. Morphology and Chemical Composition of Oxide Films
3.2. Polarization Behavior of Tensile-Strained Specimens
3.3. EIS Analyses of Oxide Films
3.4. Capacitance Behavior of Oxide Films
4. Discussion
5. Conclusions
- (1)
- Oxide films with an iron- and nickel-rich outer layer and a chromium-rich inner layer were grown on Alloy 600 specimens regardless of tensile stress. However, the particle size on the outer layer increased and the chromium concentration in the inner layer decreased on the tensile-stressed specimens, indicating that the anodic dissolution of the alloy elements including chromium was accelerated. This was evidenced by the drastic increase in the polarization current density under the tensile stress condition.
- (2)
- The charge carrier density increased, and the charge transfer resistance and film resistance were reduced when the oxide films were formed on the tensile-strained specimens, indicating that the diffusion of metal elements and oxygen through the films was expedited. These results are attributed to the generation of short diffusion paths such as line and surface defects due to tensile deformation.
- (3)
- The morphology, composition, and electrochemical properties of the oxide films were closely interconnected and were affected strongly by the tensile stress. According to the results obtained in this work, the susceptibility to SCC of Alloy 600 under tensile stress conditions in secondary water of PWRs can be attributed to the increased dissolution of alloy elements and the resulting film formation with less chromium content and more point defect density.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Staehle, R.W.; Gorman, J.A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1. Corrosion 2003, 59, 931–994. [Google Scholar] [CrossRef]
- Staehle, R.W.; Gorman, J.A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 2. Corrosion 2004, 60, 5–63. [Google Scholar] [CrossRef]
- Staehle, R.W.; Gorman, J.A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 3. Corrosion 2004, 60, 115–180. [Google Scholar] [CrossRef]
- Hu, J.; Liu, F.; Cheng, G.; Zhang, Z. Determination of the critical crack length for steam generator tubing based on fracture-mechanics-based method. Ann. Nucl. Energy 2011, 38, 1900–1905. [Google Scholar] [CrossRef]
- Majumdar, S.; Bakhtiari, S.; Kasza, K.; Park, J.Y. Validation of Failure and Leak Rate Correlations for Stress Corrosion Cracks in Steam Generator Tubes; NUREG/CR–6774, ANL–01/34; Argonne National Laboratory: Argonne, IL, USA, 2001. [Google Scholar]
- Cizelj, L.; Mavko, B.; Riesch-Oppermann, H.; Brucker-Foit, A. Propagation of stress corrosion cracks in steam generator tubes. Int. J. Pres. Ves. Pip. 1995, 63, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Zheng, L.; Yang, L.; Li, Y.; Shi, J.; Liu, S.; Qi, H. A coupled stress analysis of the steam generator tube considering the influence of the fluid flow and heat transfer in the primary and secondary sides. Appl. Therm. Eng. 2015, 87, 803–815. [Google Scholar] [CrossRef]
- Flores, O.; Marugan-Cruz, C.; Santana, D.; Garcia-Villalba, M. Thermal stresses analysis of a circular tube in a central receiver. Energy Procedia 2014, 49, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, M.A. Heat flux capabilities of first-wall tube arrays for an experimental fusion reactor. Nucl. Eng. Des. 1981, 64, 283–299. [Google Scholar] [CrossRef]
- Bergant, M.A.; Yawny, A.A.; Ipina, J.E.P. Structural integrity assessments of steam generator tubes using the FAD methodology. Nucl. Eng. Des. 2015, 295, 457–467. [Google Scholar] [CrossRef]
- Lund, A.L.; Newberry, S.F.; Donoghue, J.E.; Ennis, R.B.; Rubin, A.M.; Yerokun, J.T.; Banerjee, M.; Frye, T.J.; Goldberg, J.R. Lessons-Learned from the Indian Point Unit 2 Steam Generator Tube Failure: A Regulatory Perspective on Technical Issues; Paper #1812; Transactions of SMiRT 16: Washington, DC, USA, 2001. [Google Scholar]
- US NRC. Crack-Like Indication in the U-Bend Region of a Thermally Treated Alloy 600 Steam Generator Tube; NRC Information Notice 2010–21; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 2010.
- Shah, V.N.; Lowenstein, D.B.; Turner, A.P.L.; Ward, S.R.; Gorman, J.A.; MacDonald, P.E.; Weidenhamer, G.H. Assessment of primary water stress corrosion cracking of PWR steam generator tubes. Nucl. Eng. Des. 1992, 134, 199–215. [Google Scholar] [CrossRef]
- Diercks, D.; Shack, W.; Muscara, J. Overview of steam generator tube degradation and integrity issues. Nucl. Eng. Des. 1999, 194, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Flesch, B.; Vidal, P.; Chabrerie, J.; Brunet, J.P. Operating stresses and stress corrosion cracking in steam generator transition zones (900-MWe PWR). Int. J. Pres. Ves. Pip. 1993, 56, 213–228. [Google Scholar] [CrossRef]
- Middlebrooks, W.B.; Harrod, D.L.; Gold, R.E. Residual stresses associated with the hydraulic expansion of steam generator tubing into tubesheets. Nucl. Eng. Des. 1993, 143, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Hernalsteen, P. PWSCC in the tube expansion zone—An overview. Nucl. Eng. Des. 1993, 143, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Hur, D.H.; Choi, M.S.; Lee, D.H.; Han, J.H.; Shim, H.S. Corrosion inhibition of steam generator tubesheet by Alloy 690 cladding in secondary side environments. J. Nucl. Mater. 2013, 442, 326–329. [Google Scholar] [CrossRef]
- De Diego, G.; Briceno, D.G.; Maffiotte, C.; Baladia, M.; Arias, C.J. Examination of steam generator alloy 800 NG tube from the Almaraz Unit 2 NPP. In Proceedings of the Fontevraud 8—Contribution of Materials Investigations and Operating Experience to LWRs’ Safety, Performance and Reliability, Avignon, France, 15–18 September 2014. [Google Scholar]
- Kuang, W.; Was, G.S. The effects of grain boundary carbide density and strain rate on the stress corrosion cracking behavior of cold rolled Alloy 690. Corros. Sci. 2015, 97, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Hur, D.H.; Lee, D.H. Effect of solid solution carbon on stress corrosion cracking of Alloy 600 in a primary water at 360 °C. Mater. Sci. Eng. A 2014, 603, 129–133. [Google Scholar] [CrossRef]
- Sung, J.K. Effect of heat treatment on caustic stress corrosion cracking behavior of Alloy 600. Corrosion 1999, 55, 1144–1154. [Google Scholar] [CrossRef]
- Stiller, K.; Nilsson, J.-O.; Norring, K. Structure, chemistry, and stress corrosion cracking of grain boundary in alloys 600 and 690. Metall. Mater. Trans. A 1996, 27A, 327–341. [Google Scholar] [CrossRef]
- Bruemmer, S.M.; Was, G. Microstructural and microchemical mechanisms controlling intergranular stress corrosion cracking in light-water-reactor systems. J. Nucl. Mater. 1994, 216, 348–363. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.-C.; Tsai, W.-T.; Lee, J.-T. The effect of heat treatment and applied potential on the stress corrosion cracking of Alloy 600 in thiosulfate solution. Corros. Sci. 1993, 34, 741–757. [Google Scholar] [CrossRef]
- Yu, G.-P.; Yao, H.-C. The relation between the resistance of IGA and IGSCC and the chromium depletion of Alloy 690. Corrosion 1990, 46, 391–402. [Google Scholar] [CrossRef]
- Crum, J.R. Effect of composition and heat treatment on stress corrosion cracking of Alloy 600 steam generator tubes in sodium hydroxide. Corrosion 1982, 38, 40–45. [Google Scholar] [CrossRef]
- Xia, D.-H.; Wang, J.; Qin, Z.; Gao, Z.; Wu, Z.; Wang, J.; Yang, L.; Hu, W.; Luo, J.-L. Sulfur induced corrosion (SIC) mechanism of steam generator (SG) tubing at micro scale: A critical review. Mater. Chem. Phys. 2019, 233, 133–140. [Google Scholar] [CrossRef]
- Hur, D.H.; Choi, W.-I.; Song, G.D.; Jeon, S.-H.; Lim, S. Mechanistic insights into lead-accelerated stress corrosion cracking of Alloy 600. Corros. Sci. 2018, 145, 109–118. [Google Scholar] [CrossRef]
- Persaud, S.Y.; Long, F.; Korinek, A.; Smith, J.M. High resolution characterization of sulfur-assisted degradation in alloy 800. Corros. Sci. 2018, 140, 122–133. [Google Scholar] [CrossRef]
- Song, G.D.; Choi, W.-I.; Jeon, S.-H.; Kim, J.G.; Hur, D.H. Combined effects of lead and magnetite on the stress corrosion cracking of alloy 600 in simulated PWR secondary water. J. Nucl. Mater. 2018, 512, 8–14. [Google Scholar] [CrossRef]
- Steahle, R.W. Clues and issues in the SCC of high nickel alloys associated with dissolved lead. In Proceedings of the 12nd International Conference on Environmental Degradation of Materials in Nuclear Systems-Water Reactors, Salt Lake City, UT, USA, 14–18 August 2005; Allen, T.R., King, P.J., Nelson, L., Eds.; The Minerals, Metals & Materials Society: Pittsburgh, PA, USA, 2005; pp. 1163–1209. [Google Scholar]
- Yang, I.-J. Effect of sulphate and chloride ions on the crevice chemistry and stress corrosion cracking of Alloy 600 in high temperature aqueous solutions. Corros. Sci. 1992, 33, 25–37. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Xia, D.-H.; Xu, L.; Wang, J.; Song, S.; Fan, H.; Gao, Z.; Zhang, J.; Wu, Z.; et al. Temperature dependence of passivity degradation on UNS N08800 in near neutral crevice chemistries containing thiosulfate. Corros. Sci. 2018, 140, 260–271. [Google Scholar] [CrossRef]
- Xia, D.-H.; Sun, Y.-F.; Shen, C.; Chen, X.-Y.; Fan, H.-Q.; Luo, J.-L. A mechanistic study on sulfur-induced passivity degradation on Alloy 800 in simulated alkaline crevice chemistries at temperatures ranging from 21 °C to 300 °C. Corros. Sci. 2015, 100, 504–516. [Google Scholar] [CrossRef]
- Van Rooyen, D. Review of the stress corrosion cracking of Alloy 600. Corrosion 1975, 31, 327–337. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, Z.H.; Bai, Y.K.; Cao, X.Y.; Liu, T.G.; Lu, Y.H.; Shoji, T. Size effect of scratches on the degradation behavior of alloy 690TT in high temperature caustic solution. Corros. Sci. 2021, 182, 109314. [Google Scholar] [CrossRef]
- Wu, B.; Ming, H.; Zhang, Z.; Meng, F.; Li, Y.; Wang, J.; Han, E.-H. Effect of surface scratch depth on microstructure change and stress corrosion cracking behavior of alloy 690TT steam generator tube. Corros. Sci. 2021, 192, 109792. [Google Scholar] [CrossRef]
- Mazzei, G.B.; Burke, M.G.; Horner, D.A.; Scenini, F. Effect of stress and surface finish on Pb-caustic SCC of alloy 690TT. Corros. Sci. 2021, 187, 109462. [Google Scholar] [CrossRef]
- Hou, J.; Peng, Q.J.; Shoji, T.; Wang, J.Q.; Han, E.-H.; Ke, W. Effects of cold working path on strain concentration, grain boundary microstructure and stress corrosion cracking in Alloy 600. Corros. Sci. 2011, 53, 2956–2962. [Google Scholar] [CrossRef]
- Yamazaki, S.; Lu, Z.; Ito, Y.; Takeda, Y.; Shoji, T. The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water. Corros. Sci. 2008, 50, 835–846. [Google Scholar] [CrossRef]
- ASTM Standard G30-97. Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens; ASTM: West Conshohocken, PA, USA, 1997. [Google Scholar]
- Kim, J.-S.; Kim, Y.-J.; Lee, M.-W.; Jeon, J.-Y.; Kim, J.-S. Burst pressure estimation of Alloy 690 axial cracked steam generator U-bend tubes using finite element damage analysis. Nucl. Eng. Technol. 2021, 53, 666–676. [Google Scholar] [CrossRef]
- Ribeiro, D.V.; Abrantes, J.C.C. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Constr. Build. Mater. 2016, 111, 98–104. [Google Scholar] [CrossRef]
- Qiu, Y.; Shoji, T.; Lu, Z. Effect of dissolved hydrogen on the electrochemical behaviour of Alloy 600 in simulated PWR primary water at 290 °C. Corros. Sci. 2011, 53, 1983–1989. [Google Scholar] [CrossRef]
- Rosalbino, F.; Angelini, E.; Maccio, D.; Saccone, A.; Delfino, S. Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn–5% Al (Galfan) alloy in neutral aerated sodium chloride solution. Electrochim. Acta 2009, 54, 1204–1209. [Google Scholar] [CrossRef]
- Murray, J.N.; Moran, P.J. An EIS study of the corrosion behavior of polyethylene coating holidays in natural soil conditions. Corrosion 1989, 45, 885–895. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Macdonald, D.D. Effects of temperature and pH on the electrochemical behaviour of alloy 600 in simulated pressurized water reactor primary water. J. Nucl. Mater. 2020, 528, 151850. [Google Scholar] [CrossRef]
- Jinlong, L.; Tongxiang, L.; Chen, W.; Wenli, G. Investigation of passive films formed on the surface of alloy 690 in borate buffer solution. J. Nucl. Mater. 2015, 465, 418–423. [Google Scholar] [CrossRef]
- Luo, H.; Dong, C.F.; Xiao, K.; Li, X.G. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution. Appl. Surf. Sci. 2011, 258, 631–639. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Golozar, M.A.; Saatchi, A.; Raeissi, K. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels. Corros. Sci. 2010, 52, 205–209. [Google Scholar] [CrossRef]
- Guo, H.X.; Lu, B.T.; Luo, J.L. Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis. Electrochim. Acta 2006, 52, 1108–1116. [Google Scholar] [CrossRef]
- Amri, J.; Souier, T.; Malki, B.; Baroux, B. Effect of the final annealing of cold rolled stainless steels sheets on the electronic properties and pit nucleation resistance of passive films. Corros. Sci. 2008, 50, 431–435. [Google Scholar] [CrossRef]
- Montemor, M.F.; Ferreira, M.G.S.; Walls, M.; Rondot, B.; Cunha Belo, M. Influence of pH on properties of oxide films formed on Type 316L stainless steel, Alloy 600, and Alloy 690 in high-temperature aqueous environments. Corrosion 2003, 59, 11–21. [Google Scholar] [CrossRef]
- Hakiki, N.B.; Boudin, S.; Rondot, B.; Da Cunha Belo, M. The electronic structure of passive films formed on stainless steels. Corros. Sci. 1995, 37, 1809–1822. [Google Scholar] [CrossRef]
- Gaben, F.; Vuillemin, B.; Oltra, R. Influence of the chemical composition and electronic structure of passive films grown on 316L SS on their transient electrochemical behavior. J. Electrochem. Soc. 2004, 151, B595–B604. [Google Scholar] [CrossRef]
- Sunseri, C.; Piazza, S.; Quarto, F.D. Photocurrent spectroscopic investigations of passive films on chromium. J. Electrochem. Soc. 1990, 137, 2411–2417. [Google Scholar] [CrossRef]
- Kofstad, P.; Lillerud, K.P. On high temperature oxidation of chromium II. Properties of Cr2O3 and the oxidation mechanism of chromium. J. Electrochem. Soc. 1980, 127, 2410–2419. [Google Scholar] [CrossRef]
- Ferreira, M.G.S.; Hakiki, N.E.; Goodlet, G.; Faty, S.; Simoes, A.M.P.; Da Cunha Belo, M. Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel. Electrochim. Acta 2001, 46, 3767–3776. [Google Scholar] [CrossRef]
- Hakiki, N.E.; Montemor, M.F.; Ferreira, M.G.S.; Da Cunha Belo, M. Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corros. Sci. 2000, 42, 687–702. [Google Scholar] [CrossRef]
- Sennour, M.; Marchetti, L.; Martin, F.; Perrin, S.; Molins, R.; Pijolat, M. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor. J. Nucl. Mater. 2010, 402, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Ziemniak, S.E.; Hanson, M. Corrosion behavior of NiCrFe Alloy 600 in high temperature, hydrogenated water. Corros. Sci. 2006, 48, 498–521. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wu, X.; Han, E.-H. Effect of Zn injection on established surface oxide films on 316 L stainless steel in borated and lithiated high temperature water. Corros. Sci. 2012, 65, 136–144. [Google Scholar] [CrossRef]
- Lister, D.H.; Davidson, R.D.; McAlpine, E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water. Corros. Sci. 1987, 27, 113–140. [Google Scholar] [CrossRef]
- Marchetti, L.; Perrin, S.; Jambon, F.; Pijolat, M. Corrosion of nickel-base alloys in primary medium of pressurized water reactors: New insights on the oxide growth mechanisms and kinetic modelling. Corros. Sci. 2016, 102, 24–35. [Google Scholar] [CrossRef]
- Stellwag, B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water. Corros. Sci. 1998, 40, 337–370. [Google Scholar] [CrossRef]
- Robertson, J. The mechanism of high temperature aqueous corrosion of steel. Corros. Sci. 1989, 29, 1275–1291. [Google Scholar] [CrossRef]
- Lim, D.-S.; Jeon, S.-H.; Choi, J.; Song, K.M.; Hur, D.H. Effect of zinc addition scenarios on general corrosion of Alloy 690 in borated and lithiated water at 330 °C. Corros. Sci. 2021, 189, 109627. [Google Scholar] [CrossRef]
- Macdonald, D.D. The history of the point defect model for the passive state: A brief review of film growth aspects. Electrochim. Acta 2011, 56, 1761–1772. [Google Scholar] [CrossRef]
- Chao, C.Y.; Lin, L.F.; Macdonald, D.D. A point defect model for anodic passive films. J. Electrochem. Soc. 1981, 128, 1187–1194. [Google Scholar] [CrossRef]
- Dieter, G.E. Mechanical Metallurgy; McGraw-Hill Book Company, Inc.: London, UK, 1976. [Google Scholar]
- Ramsay, J.D.; Evans, H.E.; Child, D.J.; Taylor, M.P.; Hardy, M.C. The influence of stress on the oxidation of a Ni-based superalloy. Corros. Sci. 2019, 154, 277–285. [Google Scholar] [CrossRef]
Ni | Cr | Fe | C | Si | Mn | Ti | Al | S | N | Cu | Co |
---|---|---|---|---|---|---|---|---|---|---|---|
76.01 | 15.20 | 7.82 | 0.023 | 0.26 | 0.21 | 0.25 | 0.17 | <0.001 | 0.003 | 0.034 | 0.020 |
Specimen | Rs (Ω·cm2) | Rct (Ω·cm2) | Cdl (10−5 F·cm−2) | Rf (105 Ω·cm2) | C (10−5 F·cm−2) |
---|---|---|---|---|---|
No strain | 9.4 | 1117 | 2.08 | 3.94 | 6.15 |
30% strained | 12.3 | 911 | 2.21 | 2.75 | 7.63 |
Specimen | Region I | Region II | Region III | Region IV | Region V |
---|---|---|---|---|---|
(Nd, ×1021 cm−3) | (Na, ×1021 cm−3) | (Nd, ×1021 cm−3) | (Na, ×1021 cm−3) | (Na, ×1021 cm−3) | |
No strain | 0.40 | 2.42 | 1.40 | 1.17 | 2.58 |
30% strained | 1.59 | 5.04 | 2.26 | 1.80 | 5.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, B.-J.; Han, J.; Hong, J.; Hur, D.-H. Effect of Tensile Stress on the Oxide Properties of a Nickel-Based Alloy 600 in Simulated PWR Secondary Water. Materials 2021, 14, 6460. https://doi.org/10.3390/ma14216460
Bae B-J, Han J, Hong J, Hur D-H. Effect of Tensile Stress on the Oxide Properties of a Nickel-Based Alloy 600 in Simulated PWR Secondary Water. Materials. 2021; 14(21):6460. https://doi.org/10.3390/ma14216460
Chicago/Turabian StyleBae, Byung-Joon, Jeoh Han, Jongsup Hong, and Do-Haeng Hur. 2021. "Effect of Tensile Stress on the Oxide Properties of a Nickel-Based Alloy 600 in Simulated PWR Secondary Water" Materials 14, no. 21: 6460. https://doi.org/10.3390/ma14216460
APA StyleBae, B. -J., Han, J., Hong, J., & Hur, D. -H. (2021). Effect of Tensile Stress on the Oxide Properties of a Nickel-Based Alloy 600 in Simulated PWR Secondary Water. Materials, 14(21), 6460. https://doi.org/10.3390/ma14216460