Optimization of Abrasive Water Jet Machining of SiC Reinforced Aluminum Alloy Based Metal Matrix Composites Using Taguchi–DEAR Technique
Abstract
:1. Introduction
- ⮚
- Employing a Taguchi–DEAR method as a new MCDT tool to obtain an optimal arrangement of process control factors of the machining process.
- ⮚
- Analyzing the influence of process control factors in the AWJM process using different performance measures.
- ⮚
- To identify the most significance factors effecting the performance measures.
2. Experimental Methodology
2.1. Synthesization of Al7075 Matrix Composite Reinforced by SiC Particles
2.2. AWJM Cutting of Al7075 Matrix Composite Reinforced by SiC Particles
2.3. Taguchi–DEAR Technique
- Determining the weight (w) value for each response.
- Computing the weighted data of all trials data.
- Finding the ratio of MRR weigh to smaller-the-better values.
- Calculation of MRPI.
3. Results and Discussion
3.1. Effects of Process Factors on Performance Measures
3.2. Computation of Significant Process Factors
3.3. Computation of Significant Process Factors
3.4. Surface Analysis under Optimal Control Variables
4. Conclusions
- ⮚
- The optimal arrangement of input factors in the AWJM process were found to be 2800 bar (WP), 400 mg/min (AF), 1000 mm/min (FR), and 4 mm (SOD), among the elected factors and with the error accuracy of 0.8%.
- ⮚
- The gas pressure is a significant factor for formulating the quality measures, owing to its ability to modify the impact energy and crater size of the machined specimen.
- ⮚
- Since the removal energy can be determined by the standoff distance, this can also contribute to the quality measures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fenghong, C.; Chang, C.; Zhenyu, W.; Muthuramalingam, T.; Anbuchezhiyan, G. Effects of silicon carbide and tungsten carbide in aluminium metal matrix composites. Silicon 2019, 11, 2625–2632. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Muthuramalingam, T.; Anbuchezhiyan, G. Effect of B4C and MOS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications. Compos. Part B Eng. 2019, 176, 107329. [Google Scholar] [CrossRef]
- Prakash, K.S.; Moorthy, R.S.; Gopal, P.; Kavimani, V. Effect of reinforcement, compact pressure and hard ceramic coating on aluminium rock dust composite performance. Int. J. Refract. Met. Hard Mater. 2016, 54, 223–229. [Google Scholar] [CrossRef]
- Bodunrin, M.O.; Alaneme, K.K.; Chown, L.H. Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 2015, 4, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Muthuramalingam, T.; Mohan, B.; Rajadurai, A.; Prakash, M.D.A.A. Experimental investigation of iso energy pulse generator on performance measures in EDM. Mater. Manuf. Process. 2013, 28, 1137–1142. [Google Scholar] [CrossRef]
- Shanmugam, R.; Ramoni, M.; Thangamani, G.; Thangaraj, M. Influence of additive manufactured stainless steel tool electrode on machinability of beta titanium alloy. Metals 2021, 11, 778. [Google Scholar] [CrossRef]
- Muthuramalingam, T.; Moiduddin, K.; Akash, R.; Krishnan, S.; Mian, S.H.; Ameen, W.; Alkhalefah, H. Influence of process parameters on dimensional accuracy of machined titanium (Ti-6Al-4V) alloy in laser beam machining process. Opt. Laser Technol. 2020, 132, 106494. [Google Scholar] [CrossRef]
- Muthuramalingam, T.; Vasanth, S.; Vinothkumar, P.; Geethapriyan, T.; Rabik, M.M. Multi criteria decision making of abrasive flow oriented process parameters in abrasive water jet machining using Taguchi-dear methodology. Silicon 2018, 10, 2015–2021. [Google Scholar] [CrossRef]
- Li, H.; Wang, J. An experimental study of abrasive water jet machining of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2015, 81, 361–369. [Google Scholar] [CrossRef]
- Patel, D.; Tandon, P. Experimental investigations of thermally enhanced abrasive water jet machining of hard-to-machine metals. CIRP J. Manuf. Sci. Technol. 2015, 10, 92–101. [Google Scholar] [CrossRef]
- Simsek, B.; Iç, Y.T.; Şimşek, E.H.; Şimşek, B. A RSM-based multi-response optimization application for determining optimal mix proportions of standard ready-mixed concrete. Arab. J. Sci. Eng. 2015, 41, 1435–1450. [Google Scholar] [CrossRef]
- Balraj, U.S.; Krishna, A.G. Multi-objective optimization of EDM process parameters using taguchi method, principal component analysis and grey relational analysis. Int. J. Manuf. Mater. Mech. Eng. 2014, 4, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Afram, A.; Janabi-Sharifi, F.; Fung, A.S.; Raahemifar, K. Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy Build. 2017, 141, 96–113. [Google Scholar] [CrossRef]
- Phan, N.H.; Thangaraj, M. Multi criteria decision making of vibration assisted EDM process parameters on machining silicon steel using Taguchi-dear methodology. Silicon 2021, 13, 1879–1885. [Google Scholar] [CrossRef]
- Phan, N.H.; Van Dong, P.; Dung, H.T.; Van Thien, N.; Muthuramalingam, T.; Shirguppikar, S.; Tam, N.C.; Ly, N.T. Multi-object optimization of EDM by Taguchi-dear method using AlCrNi coated electrode. Int. J. Adv. Manuf. Technol. 2021, 116, 1429–1435. [Google Scholar] [CrossRef]
Process Parameters | Unit | Variables |
---|---|---|
WP | bar | 2000, 2400, 2800 |
AF | mg/min | 300, 400, 500 |
SD | mm | 2, 3, 4 |
FR | mm/min | 1000, 1200, 1400 |
Input Factors | Quality Measures | |||||
---|---|---|---|---|---|---|
WP | AF | FR | SD | MRR (mm3/min) | Ra (µm) | TA (θ) |
2000 | 300 | 1000 | 2 | 2.105 | 6.205 | 2.45 |
2000 | 400 | 1200 | 3 | 2.865 | 4.165 | 2.28 |
2000 | 500 | 1400 | 4 | 3.012 | 7.992 | 2.35 |
2400 | 300 | 1200 | 4 | 2.902 | 8.252 | 2.78 |
2400 | 400 | 1400 | 2 | 3.042 | 5.402 | 2.85 |
2400 | 500 | 1000 | 3 | 3.315 | 5.965 | 2.67 |
2800 | 300 | 1400 | 3 | 2.988 | 5.368 | 2.76 |
2800 | 400 | 1000 | 4 | 3.645 | 6.895 | 2.85 |
2800 | 500 | 1200 | 2 | 3.165 | 5.735 | 2.98 |
Mean (M) | 3.004 | 6.219 | 2.663 | |||
Standard deviation (SD) | 0.414 | 1.306 | 0.246 | |||
Standard error (SE) | 0.138 | 0.435 | 0.082 |
Trial No. | Weights | MRPI | ||
---|---|---|---|---|
MRR | Ra (µm) | TA (θ) | ||
1. | 0.077851 | 0.107011 | 0.11983 | 0.171133 |
2. | 0.105958 | 0.159425 | 0.128765 | 0.317015 |
3. | 0.111395 | 0.083084 | 0.124929 | 0.350381 |
4. | 0.107326 | 0.080466 | 0.105606 | 0.325256 |
5. | 0.112504 | 0.122918 | 0.103012 | 0.357395 |
6. | 0.122601 | 0.111317 | 0.109957 | 0.424422 |
7. | 0.110507 | 0.123697 | 0.106371 | 0.344819 |
8. | 0.134805 | 0.096302 | 0.103012 | 0.513128 |
9. | 0.117053 | 0.115781 | 0.098518 | 0.386882 |
Factors | Levels | Max–Min | ||
---|---|---|---|---|
1 | 2 | 3 | ||
WP | 0.27951 | 0.36902 | 0.41494 | 0.13543 |
AF | 0.28040 | 0.39585 | 0.38723 | 0.11544 |
FR | 0.36956 | 0.34305 | 0.35087 | 0.02651 |
SD | 0.30514 | 0.36209 | 0.39626 | 0.09112 |
Factors | Variable | Unit |
---|---|---|
Water pressure | 2800 | bar |
Abrasive particle flow rate | 400 | mg/min |
Feed rate | 1000 | mm/min |
Standoff distance | 4 | mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thangaraj, M.; Ahmadein, M.; Alsaleh, N.A.; Elsheikh, A.H. Optimization of Abrasive Water Jet Machining of SiC Reinforced Aluminum Alloy Based Metal Matrix Composites Using Taguchi–DEAR Technique. Materials 2021, 14, 6250. https://doi.org/10.3390/ma14216250
Thangaraj M, Ahmadein M, Alsaleh NA, Elsheikh AH. Optimization of Abrasive Water Jet Machining of SiC Reinforced Aluminum Alloy Based Metal Matrix Composites Using Taguchi–DEAR Technique. Materials. 2021; 14(21):6250. https://doi.org/10.3390/ma14216250
Chicago/Turabian StyleThangaraj, Muthuramalingam, Mahmoud Ahmadein, Naser A. Alsaleh, and Ammar H. Elsheikh. 2021. "Optimization of Abrasive Water Jet Machining of SiC Reinforced Aluminum Alloy Based Metal Matrix Composites Using Taguchi–DEAR Technique" Materials 14, no. 21: 6250. https://doi.org/10.3390/ma14216250
APA StyleThangaraj, M., Ahmadein, M., Alsaleh, N. A., & Elsheikh, A. H. (2021). Optimization of Abrasive Water Jet Machining of SiC Reinforced Aluminum Alloy Based Metal Matrix Composites Using Taguchi–DEAR Technique. Materials, 14(21), 6250. https://doi.org/10.3390/ma14216250