Alkylated Benzodithienoquinolizinium Salts as Possible Non-Fullerene Organic N-Type Semiconductors: An Experimental and Theoretical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Polycyclic Heteroaromatic Salts
2.2. Electrochemical Measurements
2.3. Thermogravimetric Measurements
2.4. Computational Details
3. Results
3.1. Synthesis of the Polycyclic Heteroaromatic Salts 4a–c
3.2. Spectroscopic Characterization of Tetrasubtituted and Photocyclized Pyridinium Salts
3.3. Electrochemical Studies
3.4. Thermogravimetric Measurements
3.5. Theoretical Studies
3.5.1. Monomeric BPDTQ+ Cations
3.5.2. π-Stacking in Dimeric BPDTQ+ Cations
3.5.3. Charge Mobility in Dimeric BPDTQ+ Cations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Chen, Y.; Feng, L.-W.; Gu, C.; Li, G.; Su, N.; Wang, G.; Swick, S.M.; Huang, W.; Guo, X.; et al. Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. EnergyChem 2020, 2, 100042. [Google Scholar] [CrossRef]
- Haddon, R.C. C 70 Thin Film Transistors. J. Am. Chem. Soc. 1996, 118, 3041–3042. [Google Scholar] [CrossRef]
- Sugiyama, H.; Nagano, T.; Nouchi, R.; Kawasaki, N.; Ohta, Y.; Imai, K.; Tsutsui, M.; Kubozono, Y.; Fujiwara, A. Transport properties of field-effect transistors with thin films of C76 and its electronic structure. Chem. Phys. Lett. 2007, 449, 160–164. [Google Scholar] [CrossRef]
- Shibata, K.; Kubozono, Y.; Kanbara, T.; Hosokawa, T.; Fujiwara, A.; Ito, Y.; Shinohara, H. Fabrication and characteristics of C84 fullerene field-effect transistors. Appl. Phys. Lett. 2004, 84, 2572–2574. [Google Scholar] [CrossRef]
- Kanbara, T.; Shibata, K.; Fujiki, S.; Kubozono, Y.; Kashino, S.; Urisu, T.; Sakai, M.; Fujiwara, A.; Kumashiro, R.; Tanigaki, K. N-channel field effect transistors with fullerene thin films and their application to a logic gate circuit. Chem. Phys. Lett. 2003, 379, 223–229. [Google Scholar] [CrossRef]
- Kobayashi, S.; Mori, S.; Iida, S.; Ando, H.; Takenobu, T.; Taguchi, Y.; Fujiwara, A.; Taninaka, A.; Shinohara, H.; Iwasa, Y. Conductivity and Field Effect Transistor of La2@C80 Metallofullerene. J. Am. Chem. Soc. 2003, 125, 8116–8117. [Google Scholar] [CrossRef] [PubMed]
- Speller, E.M.; Clarke, A.J.; Luke, J.; Lee, H.K.H.; Durrant, J.R.; Li, N.; Wang, T.; Wong, H.C.; Kim, J.-S.; Tsoi, W.C.; et al. From fullerene acceptors to non-fullerene acceptors: Prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A 2019, 7, 23361–23377. [Google Scholar] [CrossRef]
- Kim, H.U.; Kim, J.-H.; Kang, H.; Grimsdale, A.C.; Kim, B.J.; Yoon, S.C.; Hwang, D.-H. Naphthalene-, Anthracene-, and Pyrene-Substituted Fullerene Derivatives as Electron Acceptors in Polymer-based Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 20776–20785. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Xiao, Y. A simple molecular structure of ortho-derived perylene diimide diploid for non-fullerene organic solar cells with efficiency over 8%. J. Mater. Chem. A 2017, 5, 22288–22296. [Google Scholar] [CrossRef]
- Kozma, E.; Kotowski, D.; Luzzati, S.; Catellani, M.; Bertini, F.; Famulari, A.; Raos, G. Improving the efficiency of P3HT:perylene diimide solar cells via bay-substitution with fused aromatic rings. RSC Adv. 2013, 3, 9185. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Tan, L.; Yang, G.; Li, Y.; Zhang, G.; Liu, Z.; Xu, W.; Zhang, D. Dithiazole-fused naphthalene diimides toward new n-type semiconductors. J. Mater. Chem. C 2013, 1, 1087–1092. [Google Scholar] [CrossRef]
- Cui, X.; Xiao, C.; Zhang, L.; Li, Y.; Wang, Z. Polycyclic aromatic hydrocarbons with orthogonal tetraimides as n-type semiconductors. Chem. Commun. 2016, 52, 13209–13212. [Google Scholar] [CrossRef] [PubMed]
- Fukutomi, Y.; Nakano, M.; Hu, J.-Y.; Osaka, I.; Takimiya, K. Naphthodithiophenediimide (NDTI): Synthesis, Structure, and Applications. J. Am. Chem. Soc. 2013, 135, 11445–11448. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.H.; Telford, A.M.; Röhr, J.A.; Wyatt, M.F.; Rice, B.; Wu, J.; de Castro Maciel, A.; Tuladhar, S.M.; Speller, E.; McGettrick, J.; et al. The role of fullerenes in the environmental stability of polymer:fullerene solar cells. Energy Environ. Sci. 2018, 11, 417–428. [Google Scholar] [CrossRef]
- Heumueller, T.; Mateker, W.R.; Distler, A.; Fritze, U.F.; Cheacharoen, R.; Nguyen, W.H.; Biele, M.; Salvador, M.; von Delius, M.; Egelhaaf, H.-J.; et al. Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 2016, 9, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.C.; Li, Z.; Tan, C.H.; Zhong, H.; Huang, Z.; Bronstein, H.; McCulloch, I.; Cabral, J.T.; Durrant, J.R. Morphological Stability and Performance of Polymer–Fullerene Solar Cells under Thermal Stress: The Impact of Photoinduced PC60 BM Oligomerization. ACS Nano 2014, 8, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, T.; Wang, X.-F.; Sano, T.; Hong, Z.; Yang, Y.; Kido, J. Fullerene derivatives as electron donor for organic photovoltaic cells. Appl. Phys. Lett. 2013, 103, 203301. [Google Scholar] [CrossRef]
- Deng, L.-L.; Xie, S.-L.; Yuan, C.; Liu, R.-F.; Feng, J.; Sun, L.-C.; Lu, X.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. High LUMO energy level C60(OCH3)4 derivatives: Electronic acceptors for photovoltaic cells with higher open-circuit voltage. Sol. Energy Mater. Sol. Cells 2013, 111, 193–199. [Google Scholar] [CrossRef]
- Katz, H.E.; Lovinger, A.J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A. A soluble and air-stable organic semiconductor with high electron mobility. Nature 2000, 404, 478–481. [Google Scholar] [CrossRef]
- Ling, M.-M.; Erk, P.; Gomez, M.; Koenemann, M.; Locklin, J.; Bao, Z. Air-Stable n-Channel Organic Semiconductors Based on Perylene Diimide Derivatives without Strong Electron Withdrawing Groups. Adv. Mater. 2007, 19, 1123–1127. [Google Scholar] [CrossRef]
- Babel, A.; Jenekhe, S.A. High Electron Mobility in Ladder Polymer Field-Effect Transistors. J. Am. Chem. Soc. 2003, 125, 13656–13657. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J.R.; Dötz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679–686. [Google Scholar] [CrossRef]
- Yin, X.; Xie, G.; Peng, Y.; Wang, B.; Chen, T.; Li, S.; Zhang, W.; Wang, L.; Yang, C. Self-Doping Cathode Interfacial Material Simultaneously Enabling High Electron Mobility and Powerful Work Function Tunability for High-Efficiency All-Solution-Processed Polymer Light-Emitting Diodes. Adv. Funct. Mater. 2017, 27, 1700695. [Google Scholar] [CrossRef]
- Ye, H.; Hu, X.; Jiang, Z.; Chen, D.; Liu, X.; Nie, H.; Su, S.-J.; Gong, X.; Cao, Y. Pyridinium salt-based molecules as cathode interlayers for enhanced performance in polymer solar cells. J. Mater. Chem. A 2013, 1, 3387. [Google Scholar] [CrossRef]
- Pappenfus, T.M.; Chesterfield, R.J.; Frisbie, C.D.; Mann, K.R.; Casado, J.; Raff, J.D.; Miller, L.L. A π-Stacking Terthiophene-Based Quinodimethane Is an n-Channel Conductor in a Thin Film Transistor. J. Am. Chem. Soc. 2002, 124, 4184–4185. [Google Scholar] [CrossRef] [PubMed]
- Chesterfield, R.J.; Newman, C.R.; Pappenfus, T.M.; Ewbank, P.C.; Haukaas, M.H.; Mann, K.R.; Miller, L.L.; Frisbie, C.D. High Electron Mobility and Ambipolar Transport in Organic Thin-Film Transistors Based on a π-Stacking Quinoidal Terthiophene. Adv. Mater. 2003, 15, 1278–1282. [Google Scholar] [CrossRef]
- Handa, S.; Miyazaki, E.; Takimiya, K.; Kunugi, Y. Solution-Processible n-Channel Organic Field-Effect Transistors Based on Dicyanomethylene-Substituted Terthienoquinoid Derivative. J. Am. Chem. Soc. 2007, 129, 11684–11685. [Google Scholar] [CrossRef] [PubMed]
- Kozycz, L.M.; Guo, C.; Manion, J.G.; Tilley, A.J.; Lough, A.J.; Li, Y.; Seferos, D.S. Enhanced electron mobility in crystalline thionated naphthalene diimides. J. Mater. Chem. C 2015, 3, 11505–11515. [Google Scholar] [CrossRef] [Green Version]
- Tilley, A.J.; Guo, C.; Miltenburg, M.B.; Schon, T.B.; Yan, H.; Li, Y.; Seferos, D.S. Thionation Enhances the Electron Mobility of Perylene Diimide for High Performance n-Channel Organic Field Effect Transistors. Adv. Funct. Mater. 2015, 25, 3321–3329. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Long, G.; Liu, Y.; Zhang, Q. From non-detectable to decent: Replacement of oxygen with sulfur in naphthalene diimide boosts electron transport in organic thin-film transistors (OTFT). J. Mater. Chem. C 2015, 3, 8219–8224. [Google Scholar] [CrossRef]
- Huong, V.T.T.; Nguyen, H.T.; Tai, T.B.; Nguyen, M.T. π-Conjugated Molecules Containing Naphtho[2,3-b]thiophene and Their Derivatives: Theoretical Design for Organic Semiconductors. J. Phys. Chem. C 2013, 117, 10175–10184. [Google Scholar] [CrossRef]
- Zhao, K.; Du, J.; Wang, H.; Zhao, K.; Hu, P.; Wang, B.; Monobe, H.; Heinrich, B.; Donnio, B. Board-like Fused-Thiophene Liquid Crystals and their Benzene Analogs: Facile Synthesis, Self-Assembly, p-Type Semiconductivity, and Photoluminescence. Chem. Asian J. 2019, 14, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Concellón, A.; Lin, C.-J.; Romero, N.A.; Lin, S.; Swager, T.M. Thiophene-fused polyaromatics: Synthesis, columnar liquid crystal, fluorescence and electrochemical properties. Chem. Sci. 2020, 11, 4695–4701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, T.; Zhong, Y.; Wang, H.; Zhao, K.; Wang, B.; Hu, P.; Monobe, H.; Donnio, B. Butterfly-like Shape Liquid Crystals Based Fused-Thiophene as Unidimensional Ambipolar Organic Semiconductors with High Mobility. Chem. Asian J. 2021, 16, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Venkateswarlu, S.; Prakoso, S.P.; Kumar, S.; Kuo, M.-Y.; Tao, Y.-T. Benzophenanthrothiophenes: Syntheses, Crystal Structures, and Properties. J. Org. Chem. 2019, 84, 10990–10998. [Google Scholar] [CrossRef]
- Feriancová, L.; Cigáň, M.; Gmucová, K.; Kožíšek, J.; Nádaždy, V.; Putala, M. Effect of electron-withdrawing groups on molecular properties of naphthyl and anthryl bithiophenes as potential n-type semiconductors. New J. Chem. 2021, 45, 9794–9804. [Google Scholar] [CrossRef]
- Gicevicius, M.; Bagdziunas, G.; Abduloglu, Y.; Ramanaviciene, A.; Gumusay, O.; Ak, M.; Soganci, T.; Ramanavicius, A. Experimental and Theoretical Investigations of an Electrochromic Azobenzene and 3,4-Ethylenedioxythiophene-based Electrochemically Formed Polymeric Semiconductor. ChemPhysChem 2018, 19, 2735–2740. [Google Scholar] [CrossRef]
- Feng, X.; Marcon, V.; Pisula, W.; Hansen, M.R.; Kirkpatrick, J.; Grozema, F.; Andrienko, D.; Kremer, K.; Müllen, K. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat. Mater. 2009, 8, 421–426. [Google Scholar] [CrossRef]
- Van de Craats, A.M.; Warman, J.M.; Fechtenkötter, A.; Brand, J.D.; Harbison, M.A.; Müllen, K. Record Charge Carrier Mobility in a Room-Temperature Discotic Liquid-Crystalline Derivative of Hexabenzocoronene. Adv. Mater. 1999, 11, 1469–1472. [Google Scholar] [CrossRef]
- Adam, D.; Schuhmacher, P.; Simmerer, J.; Häussling, L.; Siemensmeyer, K.; Etzbachi, K.H.; Ringsdorf, H.; Haarer, D. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 1994, 371, 141–143. [Google Scholar] [CrossRef]
- Pisula, W.; Feng, X.; Müllen, K. Tuning the Columnar Organization of Discotic Polycyclic Aromatic Hydrocarbons. Adv. Mater. 2010, 22, 3634–3649. [Google Scholar] [CrossRef]
- Yang, C.; Wu, D.; Zhao, W.; Ye, W.; Xu, Z.; Zhang, F.; Feng, X. Anion-induced self-assembly of positively charged polycyclic aromatic hydrocarbons towards nanostructures with controllable two-dimensional morphologies. CrystEngComm 2016, 18, 877–880. [Google Scholar] [CrossRef] [Green Version]
- Marri, A.R.; Black, F.A.; Mallows, J.; Gibson, E.A.; Fielden, J. Pyridinium p-DSSC dyes: An old acceptor learns new tricks. Dye. Pigment. 2019, 165, 508–517. [Google Scholar] [CrossRef]
- Sun, Z.-D.; Zhao, J.-S.; Ayyanar, K.; Ju, X.-H.; Xia, Q.-Y. Design of high performance p-type sensitizers with pyridinium derivatives as the acceptor by theoretical calculations. RSC Adv. 2020, 10, 10569–10576. [Google Scholar] [CrossRef]
- Rafiq, M.; Jing, J.; Liang, Y.; Hu, Z.; Zhang, X.; Tang, H.; Tian, L.; Li, Y.; Huang, F. A pyridinium-pended conjugated polyelectrolyte for efficient photocatalytic hydrogen evolution and organic solar cells. Polym. Chem. 2021, 12, 1498–1506. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Zakaria, Z.; Lunt, E. The photocyclisation of 1,2-Ciarylpyridinium cations and the photobiscyclisation of 1,2,6-triarylpyridinium cations. J. Chem. Soc. Perkin Trans. 1980, 1, 1879. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Agha, B.; de Ville, G.Z.; Lunt, E.; Knyazhanskii, M.I.; Tymyanskii, Y.R.; Pyshchev, A.I. Photocyclization of 1,2-diaryl- and photobicyclization of 1,2,6-triarylpyridinium cations. Chem. Heterocycl. Compd. 1984, 20, 1245–1254. [Google Scholar] [CrossRef]
- Wu, D.; Pisula, W.; Enkelmann, V.; Feng, X.; Müllen, K. Controllable Columnar Organization of Positively Charged Polycyclic Aromatic Hydrocarbons by Choice of Counterions. J. Am. Chem. Soc. 2009, 131, 9620–9621. [Google Scholar] [CrossRef]
- Fortage, J.; Tuyèras, F.; Ochsenbein, P.; Puntoriero, F.; Nastasi, F.; Campagna, S.; Griveau, S.; Bedioui, F.; Ciofini, I.; Lainé, P.P. Expanded Pyridiniums: Bis-cyclization of Branched Pyridiniums into Their Fused Polycyclic and Positively Charged Derivatives-Assessing the Impact of Pericondensation on Structural, Electrochemical, Electronic, and Photophysical Features. Chem. Eur. J. 2010, 16, 11047–11063. [Google Scholar] [CrossRef] [PubMed]
- Aracena, A.; Rezende, M.C.; Encinas, M.V.; Vergara, C.; Vásquez, S.O. Aggregation phenomena in photobicyclised pyridinium salts. New J. Chem. 2017, 41, 14589–14594. [Google Scholar] [CrossRef]
- Wu, D.; Zhi, L.; Bodwell, G.J.; Cui, G.; Tsao, N.; Müllen, K. Self-Assembly of Positively Charged Discotic PAHs: From Nanofibers to Nanotubes. Angew. Chem. Int. Ed. 2007, 46, 5417–5420. [Google Scholar] [CrossRef]
- Wu, D.; Feng, X.; Takase, M.; Haberecht, M.C.; Müllen, K. Synthesis and self-assembly of dibenzo[jk,mn]naphtho[2,1,8-fgh]thebenidinium derivates. Tetrahedron 2008, 64, 11379–11386. [Google Scholar] [CrossRef]
- Mali, K.S.; Wu, D.; Feng, X.; Müllen, K.; Van der Auweraer, M.; De Feyter, S. Scanning Tunneling Microscopy-Induced Reversible Phase Transformation in the Two-Dimensional Crystal of a Positively Charged Discotic Polycyclic Aromatic Hydrocarbon. J. Am. Chem. Soc. 2011, 133, 5686–5688. [Google Scholar] [CrossRef]
- Cui, K.; Ivasenko, O.; Mali, K.S.; Wu, D.; Feng, X.; Müllen, K.; De Feyter, S.; Mertens, S.F.L. Potential-driven molecular tiling of a charged polycyclic aromatic compound. Chem. Commun. 2014, 50, 10376–10378. [Google Scholar] [CrossRef] [Green Version]
- García, G.; Moral, M.; Granadino-Roldán, J.M.; Garzón, A.; Navarro, A.; Fernández-Gómez, M. Theoretical Approach to the Study of Thiophene-Based Discotic Systems As Organic Semiconductors. J. Phys. Chem. C 2013, 117, 15–22. [Google Scholar] [CrossRef]
- Bello, A.M.; Kotra, L.P. Improved synthesis of pyrylium salts leading to 2,4-disubstituted diarylfurans via novel mechanism. Tetrahedron Lett. 2003, 44, 9271–9274. [Google Scholar] [CrossRef]
- East, G.A.; del Valle, M.A. Easy-to-Make Ag/AgCl Reference Electrode. J. Chem. Educ. 2000, 77, 97. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. GAUSSIAN 09; Revision E.01; Gaussion, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.C.S.; Taveira, R.J.S.; Lima, C.F.R.A.C.; Mendes, A.; Santos, L.M.N.B.F. Optical band gaps of organic semiconductor materials. Opt. Mater. 2016, 58, 51–60. [Google Scholar] [CrossRef]
- García, M.; Carfumán, K.; Díaz, C.; Garrido, C.; Osorio-Román, I.; Aguirre, M.J.; Isaacs, M. Multimetallic porphyrins/polyoxotungstate modified electrodes by layer-by-layer method: Electrochemical, spectroscopic and morphological characterization. Electrochim. Acta 2012, 80, 390–398. [Google Scholar] [CrossRef]
- Crespilho, F.N.; Zucolotto, V.; Siqueira, J.R., Jr.; Carvalho, A.J.F.; Oliviera, O.N., Jr. Using Electrochemical Data to Obtain Energy Diagrams for Layer-By-Layer Films from Metallic Phthalocyanines. Int. J. Electrochem. Sci. 2006, 1, 151–159. [Google Scholar]
- Liu, W.-X.; Yao, J.-N.; Zhan, C.-L. Tailoring the photophysical and photovoltaic properties of boron-difluorodipyrromethene dimers. Chinese Chem. Lett. 2017, 28, 875–880. [Google Scholar] [CrossRef]
- Deng, Y.; Sun, B.; Quinn, J.; He, Y.; Ellard, J.; Guo, C.; Li, Y. Thiophene-S,S-dioxidized indophenines as high performance n-type organic semiconductors for thin film transistors. RSC Adv. 2016, 6, 45410–45418. [Google Scholar] [CrossRef]
- Lim, E. Two A-D-A-type Non-Fullerene Small Molecule Acceptors Based on 1,3-Dimethylbarbituric Acid for OPVs. Bull. Korean Chem. Soc. 2017, 38, 285–288. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.-D.; Ma, L.-X.; Zhang, B. Electronic and electrochemical properties as well as flowerlike supramolecular assemblies of fulleropyrrolidines bearing ester substituents with different alkyl chain lengths. RSC Adv. 2014, 4, 60342–60348. [Google Scholar] [CrossRef]
- Bredas, J.-L. Mind the gap! Mater. Horiz. 2014, 1, 17–19. [Google Scholar] [CrossRef]
- Zhan, C.-G.; Nichols, J.A.; Dixon, D.A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. J. Phys. Chem. A 2003, 107, 4184–4195. [Google Scholar] [CrossRef] [Green Version]
- Inokuchi, H.; Imaeda, K.; Enoki, T.; Mori, T.; Maruyama, Y.; Saito, G.; Okada, N.; Yamochi, H.; Seki, K.; Higuchi, Y.; et al. Tetrakis(methyltelluro)tetrathiafulvalene (TTeC1TTF), a high-mobility organic semiconductor. Nature 1987, 329, 39–40. [Google Scholar] [CrossRef]
- Azizi, A.; Ebrahimi, A. Theoretical investigation of the π+-π+ stacking interactions in substituted pyridinium ion. J. Mol. Graph. Model. 2017, 77, 225–231. [Google Scholar] [CrossRef]
- Saito, G.; Yoshida, Y. Development of Conductive Organic Molecular Assemblies: Organic Metals, Superconductors, and Exotic Functional Materials. Bull. Chem. Soc. Jpn. 2007, 80, 1–137. [Google Scholar] [CrossRef]
- Bässler, H. Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study. Phys. Solid. State 1993, 175, 15–56. [Google Scholar] [CrossRef]
- Coropceanu, V.; Cornil, J.; da Silva Filho, D.A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Charge Transport in Organic Semiconductors. Chem. Rev. 2007, 107, 926–952. [Google Scholar] [CrossRef]
- Ishii, H.; Kobayashi, N.; Hirose, K. Carrier transport calculations of organic semiconductors with static and dynamic disorder. Jpn. J. Appl. Phys. 2019, 58, 110501. [Google Scholar] [CrossRef]
- Schweicher, G.; Garbay, G.; Jouclas, R.; Vibert, F.; Devaux, F.; Geerts, Y.H. Molecular Semiconductors for Logic Operations: Dead-End or Bright Future? Adv. Mater. 2020, 32, 1905909. [Google Scholar] [CrossRef]
- Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Sosorev, A.Y. Simple charge transport model for efficient search of high-mobility organic semiconductor crystals. Mater. Des. 2020, 192, 108730. [Google Scholar] [CrossRef]
- Shuai, Z.; Li, W.; Ren, J.; Jiang, Y.; Geng, H. Applying Marcus theory to describe the carrier transports in organic semiconductors: Limitations and beyond. J. Chem. Phys. 2020, 153, 080902. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.R.; Fréchet, J.M.J. Organic Semiconducting Oligomers for Use in Thin Film Transistors. Chem. Rev. 2007, 107, 1066–1096. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Wang, C.; Hu, W. High performance organic semiconductors for field-effect transistors. Chem. Commun. 2010, 46, 5211. [Google Scholar] [CrossRef] [PubMed]
- Lemaur, V.; da Silva Filho, D.A.; Coropceanu, V.; Lehmann, M.; Geerts, Y.; Piris, J.; Debije, M.G.; van de Craats, A.M.; Senthilkumar, K.; Siebbeles, L.D.A.; et al. Charge Transport Properties in Discotic Liquid Crystals: A Quantum-Chemical Insight into Structure−Property Relationships. J. Am. Chem. Soc. 2004, 126, 3271–3279. [Google Scholar] [CrossRef]
- Pope, M.; Swenberg, C.E. Electronic Processes in Organic Crystals and Polymers, 2nd ed.; Oxford University Press: New York, NY, USA, 1999; ISBN 978-0195129632. [Google Scholar]
- Huang, J.; Kertesz, M. Validation of intermolecular transfer integral and bandwidth calculations for organic molecular materials. J. Chem. Phys. 2005, 122, 234707. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Tang, X.-S.; He, F.-C. Electron transfer in poly(p-phenylene) oligomers: Effect of external electric field and application of Koopmans theorem. Chem. Phys. 1999, 248, 137–146. [Google Scholar] [CrossRef]
- Lan, Y.-K.; Huang, C.-I. A Theoretical Study of the Charge Transfer Behavior of the Highly Regioregular Poly-3-hexylthiophene in the Ordered State. J. Phys. Chem. B 2008, 112, 14857–14862. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Locklin, J. Organic Field-Effect Transistors; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- McMahon, D.P.; Troisi, A. Evaluation of the External Reorganization Energy of Polyacenes. J. Phys. Chem. Lett. 2010, 1, 941–946. [Google Scholar] [CrossRef]
- Warman, J.M.; Piris, J.; Pisula, W.; Kastler, M.; Wasserfallen, D.; Müllen, K. Charge Recombination via Intercolumnar Electron Tunneling through the Lipid-like Mantle of Discotic Hexa-alkyl-hexa- p eri -hexabenzocoronenes. J. Am. Chem. Soc. 2005, 127, 14257–14262. [Google Scholar] [CrossRef] [PubMed]
Acceptor. | LUMO Energy (eV) | μe (cm2·V−1·s−1) | D/A Ratio | PCE (%) |
---|---|---|---|---|
PC61BM [8] | −3.70 | 2.39 × 10−4 | 1:0.7 | 3.80 |
NC61BM [8] | −3.68 | 2.27 × 10−4 | 1:0.7 | 4.09 |
AC61BM [8] | −3.75 | 1.75 × 10−4 | 1:0.7 | 1.14 |
PyC61BM [8] | −3.72 | 2.13 × 10−4 | 1:0.7 | 1.95 |
oo-PDI [9] | −3.90 | - | 1:1 | 8.12 |
PDI-3 [10] | −3.63 | - | 1:2 | 0.96 |
PDI-1 [10] | −3.67 | - | 1:2 | 0.13 |
NDITz [11] | −3.99 | 0.15 | - | - |
NDINI [12] | −4.20 | 1.75 | - | - |
C8-NDTI [13] | −4.00 | 0.05 | - | - |
Compound | E′red (V) vs. Ag/AgCl | LUMO (eV) | HOMO (eV) |
---|---|---|---|
4a | −0.80 | −3.60 | −6.20 |
4b | −0.78 | −3.62 | −6.22 |
4c | −0.77 | −3.63 | −6.23 |
Cpd. | LUMO Energy (eV) | HOMO Energy (eV) |
---|---|---|
T(m-BODIPY)2 [63] | −3.49 | −5.53 |
Cz-BAR [65] | −3.51 | −5.63 |
Flu-BAR [65] | −3.53 | −5.81 |
PDI-3 [10] | −3.63 | −5.75 |
PDI-1 [10] | −3.67 | −5.79 |
PCBM [66] | −3.83 | −5.55 |
oo-PDI [9] | −3.90 | −6.15 |
PDI [9] | −3.92 | −6.21 |
Fullerene [66] | −3.92 | −5.71 |
NDITz1 [11] | −3.99 | −6.37 |
C8-NDTI [13] | −4.00 | −6.10 |
bo-PDI [9] | −4.02 | −6.23 |
IDTO-5Br [64] | −4.12 | −6.33 |
NDINI [12] | −4.20 | −6.68 |
DFT Functional | HOMO Energy (eV) | LUMO Energy (eV) | HOMO-LUMO Energy Gap (eV) | λmax of Longest-Wavelength Band (nm) | Ionization Potential IP (eV) | Electron Affinity EA (eV) |
---|---|---|---|---|---|---|
B3LYP | −8.84 | −5.33 | 3.51 | 426 | 9.76 | 4.11 |
M062X | −10.04 | −4.61 | 5.43 | 381 | - | - |
Dimers a | Distance between π-Stacked Planes (Å) b | Dipole Moment (D) b | Interaction Energy (kcal.mol−1) b | Longest-Wavelength λmax Value (nm) c |
---|---|---|---|---|
4a-FF | 3.29 | 7.49 | 14.38 | 430 |
4a-FT | 3.31 | 0.11 | 15.51 | 432 |
4b-FF | 3.24 | 20.90 | 11.74 | 430 |
4b-FT | 3.32 | 2.24 | 15.00 | 433 |
4c-FF | 3.24 | 36.41 | 8.38 | 430 |
4c-FT | 3.33 | 1.74 | 14.76 | 433 |
Dimer | Electrons a | Holes a | ||||||
---|---|---|---|---|---|---|---|---|
102 te (eV) | 10 λe (eV) | 10−12 kET e (s−1) | μe (cm2.V−1·s−1) | 102 th (eV) | 10 λh (eV) | 10−12 kET h (s−1) | μh (cm2·V−1·s−1) | |
4a-FF | 3.36 | 1.9 | 7.10 | 0.30 | 2.14 | 1.95 | 2.69 | 0.115 |
4a-FT | 3.80 | 1.9 | 9.05 | 0.38 | 16.4 | 1.96 | 158 | 6.65 |
4b-FF | 5.17 | 2.0 | 14.7 | 0.63 | 2.56 | 2.0 | 3.46 | 0.148 |
4b-FT | 4.87 | 2.0 | 13.0 | 0.53 | 9.28 | 2.0 | 45.5 | 1.86 |
4c-FF | 2.67 | 1.95 | 4.19 | 0.18 | 10.20 | 7.9 | 0.089 | 3.84 × 10−3 |
4c-FT | 4.25 | 1.95 | 10.6 | 0.43 | 0.41 | 7.9 | 1.49 × 106 | 6.1 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aracena, A.; Rezende, M.C.; García, M.; Muñoz-Becerra, K.; Wrighton-Araneda, K.; Valdebenito, C.; Celis, F.; Vásquez, O. Alkylated Benzodithienoquinolizinium Salts as Possible Non-Fullerene Organic N-Type Semiconductors: An Experimental and Theoretical Study. Materials 2021, 14, 6239. https://doi.org/10.3390/ma14216239
Aracena A, Rezende MC, García M, Muñoz-Becerra K, Wrighton-Araneda K, Valdebenito C, Celis F, Vásquez O. Alkylated Benzodithienoquinolizinium Salts as Possible Non-Fullerene Organic N-Type Semiconductors: An Experimental and Theoretical Study. Materials. 2021; 14(21):6239. https://doi.org/10.3390/ma14216239
Chicago/Turabian StyleAracena, Andrés, Marcos Caroli Rezende, Macarena García, Karina Muñoz-Becerra, Kerry Wrighton-Araneda, Cristian Valdebenito, Freddy Celis, and Octavio Vásquez. 2021. "Alkylated Benzodithienoquinolizinium Salts as Possible Non-Fullerene Organic N-Type Semiconductors: An Experimental and Theoretical Study" Materials 14, no. 21: 6239. https://doi.org/10.3390/ma14216239
APA StyleAracena, A., Rezende, M. C., García, M., Muñoz-Becerra, K., Wrighton-Araneda, K., Valdebenito, C., Celis, F., & Vásquez, O. (2021). Alkylated Benzodithienoquinolizinium Salts as Possible Non-Fullerene Organic N-Type Semiconductors: An Experimental and Theoretical Study. Materials, 14(21), 6239. https://doi.org/10.3390/ma14216239