Enhanced Defluoridation of Water Using Zirconium—Coated Pumice in Fixed-Bed Adsorption Columns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent Preparations
2.1.1. Natural Pumice
2.1.2. Coating of VPum with Zirconium
2.2. Chemicals and Reagents
2.3. Adsorbent Characterizations
2.3.1. Crystalline Structure
2.3.2. Chemical Composition
2.3.3. Fourier Transform Infrared (FT-IR) Analysis
2.3.4. Surface Area (SBET) and Pore-Size Distribution Analysis
2.3.5. Scanning Electron Microscope (SEM) Analysis
2.3.6. pH and Point of Zero Charges (pHPZC)
2.3.7. Surface Acidity/Basicity Analysis
2.4. Fixed-Bed Column Adsorption Studies
2.5. Analysis of Column Data
2.6. Breakthrough Curve Modeling
2.6.1. Thomas Model
2.6.2. Adams-Bohart Model
3. Results and Discussions
3.1. Characterization of Adsorbents
3.1.1. Crystalline Structure
3.1.2. Chemical Composition
3.1.3. Fourier Transform Infrared (FTIR) Analysis
3.1.4. Surface Area (SBET) and Pore-Size Distribution Analysis
3.1.5. Scanning Electron Microscope (SEM) Analysis
3.1.6. pH and Point of Zero Charges (pHPZC)
3.1.7. Surface Acidity/Basicity Analysis
3.2. Effect of Experimental Conditions on Fluoride Removal
3.2.1. Initial Solution pH
3.2.2. Flow Rate
3.3. Application of the Thomas Model
3.4. Application of the Adams-Bohart Model
3.5. Performance of various Adsorbents on Fluoride Uptake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fawell, J.; Bailey, K.; Chilton, J.; Dahi, E.; Fewtrell, L.; Magara, Y. Fluoride in Drinking-Water; World Health Organization (WHO) with IWA Publishing: London, UK, 2006; ISBN 9781900222969. [Google Scholar]
- Tao, W.; Zhong, H.; Pan, X.; Wang, P.; Wang, H.; Huang, L. Removal of Fluoride from Wastewater Solution Using Ce-AlOOH with Oxalic Acid as Modification. J. Hazard. Mater. 2020, 384, 121373. [Google Scholar] [CrossRef] [PubMed]
- Kumari, U.; Mishra, A.; Siddiqi, H.; Meikap, B.C. Effective Defluoridation of Industrial Wastewater by Using Acid Modified Alumina in Fixed-Bed Adsorption Column: Experimental and Breakthrough Curves Analysis. J. Clean. Prod. 2021, 279, 123645. [Google Scholar] [CrossRef]
- Kumari, U.; Behera, S.K.; Meikap, B.C. Defluoridation of Synthetic and Industrial Wastewater by Using Acidic Activated Alumina Adsorbent: Characterization and Optimization by Response Surface Methodology. J. Environ. Sci. Health—A Toxic/Hazard. Subst. Environ. Eng. 2019, 54, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Geleta, W.S.; Alemayehu, E.; Lennartz, B. Volcanic Rock Materials for Defluoridation of Water in Fixed-Bed Column Systems. Molecules 2021, 26, 977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiong, L.; Xiu, Y.; Huang, K. Defluoridation in Fixed Bed Column Filled with Zr(IV)-Loaded Garlic Peel. Microchem. J. 2019, 145, 476–485. [Google Scholar] [CrossRef]
- Kut, K.M.K.; Sarswat, A.; Srivastava, A.; Pittman, C.U., Jr.; Mohan, D. A Review of Fluoride in African Groundwater and Local Remediation Methods. Groundw. Sustain. Dev. 2016, 2–3, 190–212. [Google Scholar] [CrossRef]
- Mohan, S.; Singh, D.K.; Kumar, V.; Hasan, S.H. Effective Removal of Fluoride Ions by RGO/ZrO2 Nanocomposite from Aqueous Solution: Fixed Bed Column Adsorption Modelling and Its Adsorption Mechanism. J. Fluor. Chem. 2016. [Google Scholar] [CrossRef]
- Rango, T.; Vengosh, A.; Jeuland, M.; Whitford, G.M.; Tekle-Haimanot, R. Biomarkers of Chronic Fluoride Exposure in Groundwater in a Highly Exposed Population. Sci. Total Environ. 2017, 596–597, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Žáček, V.; Rapprich, V.; Šíma, J.; Škoda, R.; Laufek, F.; Legesa, F. Kogarkoite, Na3(SO4)F, from the Shalo Hot Spring, Main Ethiopian Rift: Implications for F-Enrichment of Thermal Groundwater Related to Alkaline Silicic Volcanic Rocks. J. Geosci. 2015, 60, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Rango, T.; Bianchini, G.; Beccaluva, L.; Tassinari, R. Geochemistry and Water Quality Assessment of Central Main Ethiopian Rift Natural Waters with Emphasis on Source and Occurrence of Fluoride and Arsenic. J. Afr. Earth Sci. 2010, 57, 479–491. [Google Scholar] [CrossRef]
- Demelash, H.; Beyene, A.; Abebe, Z.; Melese, A. Fluoride Concentration in Ground Water and Prevalence of Dental Fluorosis in Ethiopian Rift Valley: Systematic Review and Meta-Analysis. BMC Public Health 2019, 19, 1298. [Google Scholar] [CrossRef] [Green Version]
- Tekle-Haimanot, R.; Melaku, Z.; Kloos, H.; Reimann, C.; Fantaye, W.; Zerihun, L.; Bjorvatn, K. The Geographic Distribution of Fluoride in Surface and Groundwater in Ethiopia with an Emphasis on the Rift Valley. Sci. Total Environ. 2006, 367, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Schäfer, A. Removal of Fluoride and Uranium by Nanofiltration and Reverse Osmosis: A Review. Chemosphere 2014, 117, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Bejaoui, I.; Mnif, A.; Hamrouni, B. Performance of Reverse Osmosis and Nanofiltration in the Removal of Fluoride from Model Water and Metal Packaging Industrial Effluent. Sep. Sci. Technol. 2014, 49, 1135–1145. [Google Scholar] [CrossRef]
- Liu, C.C.; Liu, J.C. Coupled Precipitation-Ultrafiltration for Treatment of High Fluoride-Content Wastewater. J. Taiwan Inst. Chem. Eng. 2016, 58, 259–263. [Google Scholar] [CrossRef]
- Majewska-Nowak, K.; Grzegorzek, M.; Kabsch-Korbutowicz, M. Removal of Fluoride Ions by Batch Electrodialysis. Environ. Prot. Eng. 2015, 41, 67–81. [Google Scholar] [CrossRef]
- Jamhour, R.M.A.Q. New Inorganic Ion-Exchange Material for Selective Removal of Fluoride from Potable Water Using Ion-Selective Electrode. Am. J. Environ. Sci. 2005, 1, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, B.; Li, W.; Wang, C.; Zhou, Q.; Shuang, C.; Li, A. Performance Evaluation of Magnetic Anion Exchange Resin Removing Fluoride. J. Chem. Technol. Biotechnol. 2016, 91, 1747–1754. [Google Scholar] [CrossRef]
- Castel, C.; Schweizer, M.; Simonnot, M.O.; Sardin, M. Selective Removal of Fluoride Ions by a Two-Way Ion-Exchange Cyclic Process. Chem. Eng. Sci. 2000, 55, 3341–3352. [Google Scholar] [CrossRef]
- Gan, Y.; Wang, X.; Zhang, L.; Wu, B.; Zhang, G.; Zhang, S. Coagulation Removal of Fluoride by Zirconium Tetrachloride: Performance Evaluation and Mechanism Analysis. Chemosphere 2019, 218, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, J.; Zhang, P.; Zhang, D.; Gao, F. Investigation on the Simultaneous Removal of Fluoride, Ammonia Nitrogen and Phosphate from Semiconductor Wastewater Using Chemical Precipitation. Chem. Eng. J. 2017, 307, 696–706. [Google Scholar] [CrossRef]
- López-Guzmán, M.; Alarcón-Herrera, M.T.; Irigoyen-Campuzano, J.R.; Torres-Castañón, L.A.; Reynoso-Cuevas, L. Simultaneous Removal of Fluoride and Arsenic from Well Water by Electrocoagulation. Sci. Total Environ. 2019, 678, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.Z.; Sun, Y.H.; He, C. Research on Coagulation/Sedimentation Process for Simulation of Fluorine-Containing Wastewater Treatment. Appl. Mech. Mater. 2013, 361–363, 755–759. [Google Scholar] [CrossRef]
- Banerjee, A. Groundwater Fluoride Contamination: A Reappraisal. Geosci. Front. 2015, 6, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, M.; Rawat, S.; Jain, N.; Bhatnagar, A.; Maiti, A. Chitosan-Fe-Al-Mn Metal Oxyhydroxides Composite as Highly Efficient Fluoride Scavenger for Aqueous Medium. Carbohydr. Polym. 2019, 216, 140–148. [Google Scholar] [CrossRef]
- Teng, S.X.; Wang, S.G.; Gong, W.X.; Liu, X.W.; Gao, B.Y. Removal of Fluoride by Hydrous Manganese Oxide-Coated Alumina: Performance and Mechanism. J. Hazard. Mater. 2009, 168, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yu, J.; Liao, H.; Zhang, Y.; Luo, X. Facile Fabrication of Bimetallic Collagen Fiber Particles via Immobilizing Zirconium on Chrome-Tanned Leather as Adsorbent for Fluoride Removal from Ground Water near Hot Spring. Sep. Sci. Technol. 2019, 55, 658–671. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mukherjee, M.; De, S. Defluoridation Using Novel Chemically Treated Carbonized Bone Meal: Batch and Dynamic Performance with Scale-up Studies. Environ. Sci. Pollut. Res. Int. 2018, 25, 18161–18178. [Google Scholar] [CrossRef] [PubMed]
- Raj, R.M.; Raj, V. Electrosynthesis of Zr-Loaded Copolymer Coatings on Al for Defluoridation of Water and Its Corrosion Protection Ability. Prog. Org. Coat. 2019, 137, 105065. [Google Scholar] [CrossRef]
- Ghanbarian, M.; Ghanbarian, M.; Mahvi, A.H.; Tabatabaie, T. Enhanced Fluoride Removal over MgFe2O4–Chitosan–CaAl Nanohybrid: Response Surface Optimization, Kinetic and Isotherm Study. Int. J. Biol. Macromol. 2020, 148, 574–590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yu, H.; Zhou, Y.; Rong, J.; Mei, Z.; Qiu, F. Enhanced Adsorption of Fluoride from Aqueous Solutions by Hierarchically Structured Mg-Al LDHs/Al2O3 Composites. Korean J. Chem. Eng. 2016, 33, 720–725. [Google Scholar] [CrossRef]
- Wan, S.; Lin, J.; Tao, W.; Yang, Y.; Li, Y.; He, F. Enhanced Fluoride Removal from Water by Nanoporous Biochar-Supported Magnesium Oxide. Ind. Eng. Chem. Res. 2019, 58, 9988–9996. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, Y.; Qian, Y.; Shan, C.; Pan, B. Enhanced Defluoridation Using Novel Millisphere Nanocomposite of La-Doped Li-Al Layered Double Hydroxides Supported by Polymeric Anion Exchanger. Sci. Rep. 2018, 8, 11741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu Bakar, A.H.; Abdullah, L.C.; Mohd Zahri, N.A.; Alkhatib, M. Column Efficiency of Fluoride Removal Using Quaternized Palm Kernel Shell (QPKS). Int. J. Chem. Eng. 2019, 2019, 5743590. [Google Scholar] [CrossRef]
- Aregu, M.B.; Asfaw, S.L.; Khan, M.M. Identification of Two Low—Cost and Locally Available Filter Media (Pumice and Scoria) for Removal of Hazardous Pollutants from Tannery Wastewater. Environ. Syst. Res. 2018, 7, 10. [Google Scholar] [CrossRef]
- Asgari, G.; Roshani, B.; Ghanizadeh, G. The Investigation of Kinetic and Isotherm of Fluoride Adsorption onto Functionalize Pumice Stone. J. Hazard. Mater. 2012, 217–218, 123–132. [Google Scholar] [CrossRef]
- Mekonnen, D.T.; Alemayehu, E.; Lennartz, B. Adsorptive Removal of Phosphate from Aqueous Solutions Using Low-Cost Volcanic Rocks: Kinetics and Equilibrium Approaches. Materials 2021, 14, 1312. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, L.; An, X.; Wan, G.; Zhu, W.; Luo, Y. Enhanced Fluoride Removal from Water by Rare Earth (La and Ce) Modified Alumina: Adsorption Isotherms, Kinetics, Thermodynamics and Mechanism. Sci. Total Environ. 2019, 688, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, S.A.; Khan, T.A.; Ali, I. Zirconium Oxide-Coated Sand Based Batch and Column Adsorptive Removal of Arsenic from Water: Isotherm, Kinetic and Thermodynamic Studies. Egypt. J. Pet. 2017, 26, 553–563. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, W.; Gao, Z.Y.; Chen, D. Removal of Fluoride from Aqueous Media by Zirconium Modified Zeolite. Asian J. Chem. 2014, 26, 8062–8068. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Faraji, M.; Mohammadi, A.; Kamani, H. Optimization of Fluoride Adsorption onto Natural and Modified Pumice Using Response Surface Methodology: Isotherm, Kinetic and Thermodynamic Studies. Korean J. Chem. Eng. 2017, 34, 454–462. [Google Scholar] [CrossRef]
- Sepehr, M.N.; Sivasankar, V.; Zarrabi, M.; Senthil Kumar, M. Surface Modification of Pumice Enhancing Its Fluoride Adsorption Capacity: An Insight into Kinetic and Thermodynamic Studies. Chem. Eng. J. 2013, 228, 192–204. [Google Scholar] [CrossRef]
- Geleta, W.S.; Alemayehu, E.; Lennartz, B. Enhanced Defluoridation from Aqueous Solutions Using Zirconium—Coated Pumice in Fixed-Bed Column Systems. In Proceedings of the MOL2NET 2021, International Conference on Multidisciplinary Sciences; MDPI: Basel, Switzerland, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, C.; Evett, J.B. Soil Properties-Testing, Measurament, and Evalution; Banta Book Company: Upper Saddle River, NJ, USA, 2003; ISBN 0-13-093005-9. [Google Scholar]
- Salifu, A.; Petrusevski, B.; Ghebremichael, K.; Modestus, L.; Buamah, R.; Aubry, C.; Amy, G.L. Aluminum (Hydr) Oxide Coated Pumice for Fluoride Removal from Drinking Water: Synthesis, Equilibrium, Kinetics and Mechanism. Chem. Eng. J. 2013, 228, 63–74. [Google Scholar] [CrossRef]
- Appel, C.; Ma, L. Concentration, PH, and Surface Charge Effects on Cadmium and Lead Sorption in Three Tropical Soils. J. Environ. Qual. 2002, 31, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, G.; Hayes, R.; Drikas, M. Granular Activated Carbon: Importance of Surface Properties in the Adsorption of Naturally Occurring Organics. Colloids Surf. A Physicochem. Eng. Asp. 1993, 78, 65–71. [Google Scholar] [CrossRef]
- Boehm, H.P. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon N. Y. 1994, 32, 759–769. [Google Scholar] [CrossRef]
- WHO World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; WHO World Health Organization: Geneva, Swizerland, 2011; ISBN 978 92 4 154815 1. [Google Scholar]
- Golie, W.M.; Upadhyayula, S. Continuous Fixed-Bed Column Study for the Removal of Nitrate from Water Using Chitosan/Alumina Composite. J. Water Process Eng. 2016, 12, 58–65. [Google Scholar] [CrossRef]
- Han, R.; Zou, L.; Zhao, X.; Xu, Y.; Xu, F.; Li, Y.; Wang, Y. Characterization and Properties of Iron Oxide-Coated Zeolite as Adsorbent for Removal of Copper (II) from Solution in Fixed Bed Column. Chem. Eng. J. 2009, 149, 123–131. [Google Scholar] [CrossRef]
- Futalan, C.M.; Yang, J.H.; Phatai, P.; Chen, I.P.; Wan, M.W. Fixed-Bed Adsorption of Copper from Aqueous Media Using Chitosan-Coated Bentonite, Chitosan-Coated Sand, and Chitosan-Coated Kaolinite. Environ. Sci. Pollut. Res. 2020, 27, 24659–24670. [Google Scholar] [CrossRef]
- Adeyi, A.A.; Nurul, S.; Jamil, A.; Abdullah, L.C.; Shean, T.; Choong, Y.; Lau, K.L.; Alias, N.H. Simultaneous Adsorption of Malachite Green and Methylene Blue Dyes in a Fixed-Bed Column Using Poly(Acrylonitrile-Co-Acrylic Acid) Modified with Thiourea. Molecules 2020, 25, 2650. [Google Scholar] [CrossRef]
- Chittoo, B.S.; Sutherland, C. Column Breakthrough Studies for the Removal and Recovery of Phosphate by Lime-Iron Sludge: Modeling and Optimization Using Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System. Chin. J. Chem. Eng. 2020, 28, 1847–1859. [Google Scholar] [CrossRef]
- Thomas, H.C. Heterogeneous Ion Exchange in a Flowing System. J. Am. Chem. Soc. 1944, 66, 1664–1666. [Google Scholar] [CrossRef]
- Bohart, G.S.; Adams, E.Q. Some Aspects of the Behavior of Charcoal with Respect to Chlorine. J. Am. Chem. Soc. 1920, 42, 523–544. [Google Scholar] [CrossRef] [Green Version]
- Chu, K.H. Breakthrough Curve Analysis by Simplistic Models of Fixed Bed Adsorption: In Defense of the Century-Old Bohart-Adams Model. Chem. Eng. J. 2020, 380, 122513. [Google Scholar] [CrossRef]
- Alemayehu, E.; Lennartz, B. Virgin Volcanic Rocks: Kinetics and Equilibrium Studies for the Adsorption of Cadmium from Water. J. Hazard. Mater. 2009, 169, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, W.; Zou, Q.; Zuo, Y. Investigation on Microstructure, Compostion, and Cytocompatibility of Natural Pumice for Potential Biomedical Application. Tissue Eng. C 2010, 16, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Sepehr, M.N.; Amrane, A.; Karimaian, K.A.; Zarrabi, M.; Ghaffari, H.R. Potential of Waste Pumice and Surface Modified Pumice for Hexavalent Chromium Removal: Characterization, Equilibrium, Thermodynamic and Kinetic Study. J. Taiwan Inst. Chem. Eng. 2014, 45, 635–647. [Google Scholar] [CrossRef]
- Asere, T.G.; Verbeken, K.; Tessema, D.A.; Fufa, F.; Stevens, C.V.; Du Laing, G. Adsorption of As(III) versus As(V) from Aqueous Solutions by Cerium-Loaded Volcanic Rocks. Environ. Sci. Pollut. Res. 2017, 24, 20446–20458. [Google Scholar] [CrossRef]
- Liang, Z.; Ni, J. Improving the Ammonium Ion Uptake onto Natural Zeolite by Using an Integrated Modification Process. J. Hazard. Mater. 2009, 166, 52–60. [Google Scholar] [CrossRef]
- Asere, T.G.; Mincke, S.; De Clercq, J.; Verbeken, K.; Tessema, D.A.; Fufa, F.; Stevens, C.V.; Du Laing, G. Removal of Arsenic (V) from Aqueous Solutions Using Chitosan–Red Scoria and Chitosan–Pumice Blends. Int. J. Environ. Res. Public Health 2017, 14, 895. [Google Scholar] [CrossRef] [Green Version]
- Ayoob, S.; Gupta, A.K. Performance Evaluation of Alumina Cement Granules in Removing Fluoride from Natural and Synthetic Waters. Chem. Eng. J. 2009, 150, 485–491. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, Z.; Xu, X.; Cheng, C.; Gao, B.; Yue, Q.; Liu, S.; Han, C. Enhanced Fluoride Uptake by Bimetallic Hydroxides Anchored in Cotton Cellulose/Graphene Oxide Composites. J. Hazard. Mater. 2019, 376, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Huang, Q.; Qi, G.; Shi, S.; Xiong, L.; Huang, C.; Chen, X.; Li, H.; Chen, X. Estimation of Fixed-Bed Column Parameters and Mathematical Modeling of Breakthrough Behaviors for Adsorption of Levulinic Acid from Aqueous Solution Using SY-01 Resin. Sep. Purif. Technol. 2017, 174, 222–231. [Google Scholar] [CrossRef]
- Abdolali, A.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Zhang, J.; Liang, S.; Chang, S.W.; Nguyen, D.D.; Liu, Y. Application of a Breakthrough Biosorbent for Removing Heavy Metals from Synthetic and Real Wastewaters in a Lab-Scale Continuous Fixed-Bed Column. Bioresour. Technol. 2017, 229, 78–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.; Chakrobroty, S.; Biswas, K.; Ghosh, U.C. Column Performances on Fluoride Removal by Agglomerated Ce (IV)—Zr (IV) Mixed Oxide Nanoparticles Packed Fixed-Beds. J. Environ. Chem. Eng. 2015, 3, 653–661. [Google Scholar] [CrossRef]
- Ghosh, A.; Chakrabarti, S.; Biswas, K.; Ghosh, U.C. Agglomerated Nanoparticles of Hydrous Ce(IV) + Zr(IV) Mixed Oxide: Preparation, Characterization and Physicochemical Aspects on Fluoride Adsorption. Appl. Surf. Sci. 2014, 307, 665–676. [Google Scholar] [CrossRef]
- Sivasankar, V.; Ramachandramoorthy, T.; Chandramohan, A. Fluoride Removal from Water Using Activated and MnO2-Coated Tamarind Fruit (Tamarindus Indica) Shell: Batch and Column Studies. J. Hazard. Mater. 2010, 177, 719–729. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, F.; Zheng, X.; Ma, J.; Gao, C. Removal of Fluoride from Aqueous Solution Using Granular Acid-Treated Bentonite (GHB): Batch and Column Studies. J. Hazard. Mater. 2011, 185, 1073–1080. [Google Scholar] [CrossRef]
- García-Sánchez, J.J.; Solache-Ríos, M.; Martínez-Miranda, V.; Morelos, C.S. Removal of Fluoride Ions from Drinking Water and Fluoride Solutions by Aluminum Modified Iron Oxides in a Column System. J. Colloid Interface Sci. 2013, 407, 410–415. [Google Scholar] [CrossRef]
- Ghorai, S.; Pant, K.K. Investigations on the Column Performance of Fluoride Adsorption by Activated Alumina in a Fixed-Bed. Chem. Eng. J. 2004, 98, 165–173. [Google Scholar] [CrossRef]
Elemental Content | VPum % (wt) | Zr–Pu % (wt) | Oxide Content | VPum % (wt) | Zr–Pu % (wt) |
---|---|---|---|---|---|
Si | 27.1 | 26.3 | SiO2 | 68.9 | 63.7 |
Al | 5.3 | 5.5 | Al2O3 | 11.7 | 10.9 |
Fe | 3.4 | 3.1 | Fe2O3 | 6.7 | 5.4 |
K | 3.8 | 3.4 | K2O | 5.5 | 4.3 |
Ca | 0.3 | 0.4 | CaO | 1.1 | 0.2 |
Na | 1.2 | 1.0 | Na2O | 1.9 | 2.1 |
Mg | 0.1 | 0.1 | MgO | 0.1 | - |
Zn | <0.1 | <0.1 | TiO2 | 0.2 | - |
Zr | <0.1 | 3.9 | ZrO2 | - | 8.9 |
Mn | <0.1 | <0.1 | MnO | 0.1 | 0.2 |
Cr | <0.1 | <0.1 | ZnO | 1.2 | - |
Cu | <0.1 | <0.1 | NiO | 1.1 | 2.2 |
Co | <0.1 | <0.1 | CuO | 1.6 | 1.7 |
Cd | <0.1 | <0.1 | - | - | - |
Ni | <0.1 | <0.1 | - | - | - |
Pb | <0.1 | <0.1 | - | - | - |
As | <0.1 | <0.1 | - | - | - |
Adsorbent | Specific Surface Area (m2/g) | Average Pore Size (nm) |
---|---|---|
VPum | 3.45 | 4.43 |
Zr–Pu | 9.63 | 3.52 |
Parameter Studied | pH | CO (mg/L) | QO (mL/min) | EBCT(min) | tb (min) | te (min) | Vb (mL) | Ve (mL) | MTZ(cm) | qb (mg/kg) | qtot (mg) | qe (mg/kg) | Adsorbent |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variation of pH keeping CO and QO constant | 2 | 10 | 1.25 | 412 | 3471 | 4781 | 4338.94 | 5976.76 | 2.74 | 163.18 | 59.78 | 224.78 | Zr–Pu |
4 | 10 | 1.25 | 412 | 689 | 2058 | 861.25 | 2572.50 | 6.65 | 32.39 | 25.73 | 96.75 | ||
6 | 10 | 1.25 | 412 | 604 | 1469 | 755.00 | 1836.25 | 5.89 | 28.39 | 18.36 | 69.06 | ||
2 | 10 | 1.25 | 412 | 1206 | 2339 | 1507.50 | 2923.70 | 4.84 | 54.20 | 29.24 | 110.00 | VPum | |
4 | 10 | 1.25 | 412 | 278 | 500 | 347.50 | 625.00 | 4.44 | 13.00 | 6.25 | 23.51 | ||
6 | 10 | 1.25 | 412 | 135 | 315 | 168.75 | 393.75 | 5.71 | 6.40 | 3.94 | 14.81 | ||
Variation of QO keeping pH and CO constant | 2 | 10 | 1.25 | 412 | 3471 | 4781 | 4338.94 | 5976.76 | 2.74 | 163.18 | 59.78 | 224.78 | Zr–Pu |
2 | 10 | 2.50 | 206 | 1807 | 1360 | 2717.50 | 3400.00 | 2.00 | 102.20 | 34.00 | 127.87 | ||
2 | 10 | 3.75 | 137 | 557 | 768 | 2088.75 | 2880.00 | 2.75 | 78.55 | 28.80 | 108.31 | ||
2 | 10 | 1.25 | 412 | 1206 | 2339 | 1507.50 | 2923.70 | 4.84 | 54.20 | 29.24 | 110.00 | VPum | |
2 | 10 | 2.50 | 206 | 215 | 634 | 538.47 | 1585.16 | 6.60 | 20.30 | 7.93 | 29.80 | ||
2 | 10 | 3.75 | 137 | 75 | 359 | 282.69 | 1346.42 | 7.90 | 7.10 | 4.49 | 16.89 |
Parameter Studied | pH | Co (mg/L) | Q (mL/min) | Bed-Depth, HB (cm) | KT (L/min.mg) (×104) | qO(cal.) (mg/kg) | qe(exp.) (mg/kg) | R2 | RMSE | Adsorbent |
---|---|---|---|---|---|---|---|---|---|---|
Variation of pH keeping CO and QO constant | 2 | 10 | 1.25 | 10 | 1.110 | 226.31 | 224.78 | 0.994 | 0.0034 | Zr–Pu |
4 | 10 | 1.25 | 10 | 1.270 | 93.54 | 96.75 | 0.986 | 0.0112 | ||
6 | 10 | 1.25 | 10 | 1.870 | 64.00 | 69.06 | 0.980 | 0.0082 | ||
2 | 10 | 1.25 | 10 | 1.440 | 110.00 | 110.00 | 0.993 | 0.0013 | VPum | |
4 | 10 | 1.25 | 10 | 8.289 | 17.83 | 23.51 | 0.977 | 0.0079 | ||
6 | 10 | 1.25 | 10 | 12.099 | 13.08 | 14.81 | 0.995 | 0.0034 | ||
Variation of QO keeping pH and CO constant | 2 | 10 | 1.25 | 10 | 1.110 | 226.31 | 224.78 | 0.994 | 0.0034 | Zr–Pu |
2 | 10 | 2.50 | 10 | 5.100 | 130.33 | 127.87 | 0.993 | 0.0047 | ||
2 | 10 | 3.75 | 10 | 10.000 | 78.07 | 108.31 | 0.992 | 0.0059 | ||
2 | 10 | 1.25 | 10 | 1.440 | 110.00 | 110.00 | 0.993 | 0.0013 | VPum | |
2 | 10 | 2.50 | 10 | 3.563 | 58.81 | 29.80 | 0.953 | 0.0167 | ||
2 | 10 | 3.75 | 10 | 5.000 | 45.82 | 16.90 | 0.962 | 0.0295 |
Parameter Studied | pH | Co (mg/L) | Q (mL/min) | Bed-Depth, HB (cm) | KAB (L/min·mg) (×104) | NO(cal.) (mg/L) | R2 | RMSE | Adsorbent |
---|---|---|---|---|---|---|---|---|---|
Variation of pH keeping CO and QO constant | 2 | 10 | 1.25 | 10 | 1.110 | 116.98 | 0.996 | 0.0034 | Zr–Pu |
4 | 10 | 1.25 | 10 | 1.268 | 48.35 | 0.986 | 0.0112 | ||
6 | 10 | 1.25 | 10 | 1.874 | 33.08 | 0.980 | 0.0082 | ||
2 | 10 | 1.25 | 10 | 2.568 | 45.57 | 0.947 | 0.0013 | VPum | |
4 | 10 | 1.25 | 10 | 7.772 | 11.03 | 0.980 | 0.0079 | ||
6 | 10 | 1.25 | 10 | 11.220 | 7.75 | 0.980 | 0.0034 | ||
Variation of QO keeping pH and CO constant | 2 | 10 | 1.25 | 10 | 1.110 | 116.98 | 0.996 | 0.0034 | Zr–Pu |
2 | 10 | 2.50 | 10 | 5.063 | 69.31 | 0.993 | 0.0047 | ||
2 | 10 | 3.75 | 10 | 6.803 | 58.13 | 0.992 | 0.0059 | ||
2 | 10 | 1.25 | 10 | 2.568 | 45.57 | 0.947 | 0.0013 | VPum | |
2 | 10 | 2.50 | 10 | 4.813 | 30.03 | 0.957 | 0.0167 | ||
2 | 10 | 3.75 | 10 | 6.251 | 26.83 | 0.896 | 0.0295 |
Adsorbents | Bed Height (cm) | Fluoride Level in (mg L−1) | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|
Granular acid-treated bentonite | 28 | 6.34 | 0.190 | [72] |
Granular acid-treated bentonite | 28 | 2.85 | 0.169 | [72] |
MnO2-coated Tamarind Fruit Shell | 6 | 2 | 0.883 | [71] |
Aluminum modified iron oxide | 10.5 | 4 | 0.139 | [73] |
Activated alumina (Grade OA-25) | 10 | 5 | 0.74 | [74] |
Virgin Pumice (VPum) | 10 | 10 | 0.110 | [5] |
Virgin Scoria (VSco) | 10 | 10 | 0.022 | [5] |
Zr–Pu | 10 | 10 | 0.225 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geleta, W.S.; Alemayehu, E.; Lennartz, B. Enhanced Defluoridation of Water Using Zirconium—Coated Pumice in Fixed-Bed Adsorption Columns. Materials 2021, 14, 6145. https://doi.org/10.3390/ma14206145
Geleta WS, Alemayehu E, Lennartz B. Enhanced Defluoridation of Water Using Zirconium—Coated Pumice in Fixed-Bed Adsorption Columns. Materials. 2021; 14(20):6145. https://doi.org/10.3390/ma14206145
Chicago/Turabian StyleGeleta, Wondwosen Sime, Esayas Alemayehu, and Bernd Lennartz. 2021. "Enhanced Defluoridation of Water Using Zirconium—Coated Pumice in Fixed-Bed Adsorption Columns" Materials 14, no. 20: 6145. https://doi.org/10.3390/ma14206145
APA StyleGeleta, W. S., Alemayehu, E., & Lennartz, B. (2021). Enhanced Defluoridation of Water Using Zirconium—Coated Pumice in Fixed-Bed Adsorption Columns. Materials, 14(20), 6145. https://doi.org/10.3390/ma14206145