Catalytic and Physicochemical Evaluation of a TiO2/ZnO/Laccase Biocatalytic System: Application in the Decolorization of Azo and Anthraquinone Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Details of TiO2/ZnO Synthesis, Laccase Immobilization, Catalytic Studies and Physicochemical Analysis
2.3. Decolorization of Organic Dyes
Mass Spectroscopy (MS) Analysis
3. Results and Discussion
3.1. Catalytic Characterization of TiO2/ZnO/LTV
3.2. Physicochemical Characterization of TiO2/ZnO and the TiO2/ZnO/LTV Biocatalytic System
3.3. Decolorization of Organic Dyes by the TiO2/ZnO/LTV Biocatalytic System
3.4. Biodegradation Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Mayman, S.I.; Al-Johani, M.S.; Mohamed, M.M.; Al-Zeghayer, Y.S.; Ramay, S.M.; Al-Awadi, A.S.; Soliman, M.A. TiO2-ZnO photocatalysts synthesized by sol–gel auto-ignition technique for hydrogen production. Int. J. Hydrogen Energy 2017, 42, 5016–5025. [Google Scholar] [CrossRef]
- Razzaq, A.; In, S.I. TiO2 Based Nanostructures for photocatalytic CO2 conversion to valuable chemicals. Micromachines 2019, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Assadi, M.H.N.; Zhang, Y.; Zheng, R.K.; Ringer, S.P.; Li, S. Structural and electronic properties of Eu- and Pd-doped ZnO. Nanoscale Res. Lett. 2011, 6, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, I.I.; Sheppard, L.R.; Shahmiri, R.; Liu, R.; Le, A.; Lu, X.; Hanaor, D.; Chen, W.F.; Koshy, P.; Sorrell, C.C. Correction to: Contamination of TiO2 thin films spin coated on rutile and soda–lime–silica substrates. J. Mater. Sci. 2021, 56, 17874–17875. [Google Scholar] [CrossRef]
- Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M. Nanomaterials-based electrochromics for paper-quality displays. Adv. Mater. 2002, 14, 845–848. [Google Scholar] [CrossRef]
- Arin, J.; Thongtem, S.; Thonghtem, T. Single step synthesis of ZnO/TiO2 nanocomposite by microwave radiation and their photocatalytic activities. Mater. Lett. 2013, 96, 78–81. [Google Scholar] [CrossRef]
- Reghunath, S.; Pinheiro, D.; Sunaja Devi, K.R. A review of hierarchical nanostructures of TiO2: Advances and applications. Appl. Surf. Sci. Adv. 2021, 3, 100063. [Google Scholar] [CrossRef]
- Kubiak, A.; Siwińska-Ciesielczyk, K.; Jesionowski, T. Titania-based hybrid materials with ZnO, ZrO2 and MoS2: A review. Materials 2018, 11, 2295. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Tian, Y.; Zhang, J.; Sun, Z.; Zhao, J.; Zhang, J.; Zuo, W. Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: Enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation. J. Membr. Sci. 2017, 528, 359–368. [Google Scholar] [CrossRef]
- Hashimoto, K.; Irle, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospect. Jpn. J. Appl. Phys. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- Tian, J.; Chen, L.; Dai, J.; Wang, X.; Yin, Y.; Wu, P. Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol-gel process. Ceram. Int. 2009, 35, 2261–2270. [Google Scholar] [CrossRef]
- Mofijur, M.; Ahmed, S.F.; Ashrafur Rahman, S.M.; Yasir Arafat Siddiki, S.K.; Saiful Islam, A.B.M.; Shahabuddin, M.; Ong, H.C.; Mahlia, T.M.I.; Djavanroodi, F.; Show, P.L. Source, distribution and emerging threat of micro- and nanoplastics to marine organism and human health: Socio-economic impact and management strategies. Environ. Res. 2021, 195, 110857. [Google Scholar] [CrossRef] [PubMed]
- Deepika, A.M.; Ramasamy, L.; Bhatnagar, A.; Usman, M.; Sillanpaa, M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. Ecotoxicol. Environ. Saf. 2021, 195, 110857. [Google Scholar]
- Kristanti, R.A.; Ngu, W.J.; Yuniarto, A.; Hadibarata, T. Rhizofiltration for removal of inorganic and organic pollutants in groundwater: A review. Biointerafce Res. Appl. Chem. 2021, 4, 12326–12347. [Google Scholar]
- Sellamia, K.; Couvert, A.; Nasrallah, N.; Maachi, R.; Tandjaoui, N.; Abouseouda, M.; Amrane, A. Bio-based and cost effective method for phenolic compounds removal using cross-linked enzyme aggregates. J. Hazard. Mater. 2021, 403, 124021. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, W.; Zhu, H.; Wei, D.; Wang, N.; Li, M. Comparison of organic matter removals in single-component and bi-component systems using enhanced coagulation and magnetic ion exchange (MIEX) adsorption. Chemosphere 2018, 210, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.H.; Narindri, B.; Chu, H.; Whang, L.M. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresour. Technol. 2020, 303, 122861. [Google Scholar] [CrossRef]
- Lina, D.; Jia, R.; Wang, D.; Xiao, M.; Zhao, J.; Zou, J.; Lia, Y.; Qin, T.; Xing, B.; Chen, Y.; et al. The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 395–410. [Google Scholar] [CrossRef]
- Hena, S.; Gutierrez, L.; Croue, J.P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. J. Hazard. Mater. 2021, 403, 124041. [Google Scholar] [CrossRef]
- Senthivelan, T.; Kanagaraj, J.; Panda, R. Recent trends in fungal laccase for various industrial applications: An eco-friendly approach—A review. Biotechnol. Bioproc. 2016, 21, 19–38. [Google Scholar] [CrossRef]
- Zhuo, R.; Fan, F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. Sci. Total Environ. 2021, 778, 146132. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, K.; Zdarta, J.; Grzywaczyk, A.; Degórska, O.; Kijeńska-Gawrońska, E.; Pinelo, M.; Jesionowski, T. Horseradish peroxidase immobilised onto electrospun fibres and its application in decolourisation of dyes from model sea water. Process Biochem. 2021, 102, 10–21. [Google Scholar] [CrossRef]
- Dwevedi, A.; Kayastha, A.M. Enzyme immobilization: Solution towards various environmental issues. In Protein Structure; Haggerty, L.M., Ed.; Nova Science Publisher: Hauppauge, NY, USA, 2012; pp. 31–50. [Google Scholar]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. Developments in support materials for immobilization of oxidoreductases: A comprehensive review. Adv. Colloid Interface Sci. 2018, 258, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 2007, 49, 1289–1307. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Hemmatia, Z.A.R.; Homaei, A.; Dinari, A.; Jamlidoost, M.; Tashakor, A. Immobilization of enzymes on nanoinorganic support materials: An update. Inter. J. Biol. Macromol. 2021, 168, 708–721. [Google Scholar]
- Liua, D.M.; Chen, J.; Shi, Y.P. Advances on methods and easy separated support materials for enzymes immobilization. TrAC-Trend. Anal. Chem. 2018, 102, 332–342. [Google Scholar]
- Zucca, P.; Znajust, E. Inorganic Materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules 2014, 19, 14139–14194. [Google Scholar] [CrossRef]
- Khan, M.F.; Kundu, D.; Hazra, C.; Patra, S. A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. Inter. J. Biol. Macromol. 2019, 136, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, X.; Chen, Z.; Zhou, Y.; Ruso, J.M.; Hue, D.; Liu, Z.; Liao, Y. The immobilization of penicillin G acylase on modified TiO2 with various micro-environments. Colloids Surf. A Physicochem. Eng. Asp. 2021, 616, 126316. [Google Scholar] [CrossRef]
- Sun, H.; Xinyu, J.; Feng, J.; Ruifeng, Z. Immobilization of horseradish peroxidase on ZnO nanowires/macroporous SiO2 composites for the complete decolorization of anthraquinone dyes. Biotechnol. Appl. Biochem. 2018, 65, 220–227. [Google Scholar] [CrossRef]
- Gao, Z.; Chu, J.; Jiang, T.; Xu, T.; Wua, B.; He, B. Lipase immobilization on functionalized mesoporous TiO2: Specific adsorption, hyperactivation and application in cinnamyl acetate synthesis. Process Biochem. 2018, 64, 152–159. [Google Scholar] [CrossRef]
- Movahedi, M.; Samsam, M.; Shariat, S.Z.A.; Nazem, M.; Movahedi, M. Immobilization of latoperoxidase in ZnO nanoparticles with improved stability. Biotechnol. Lett. 2020, 42, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Husain, Q.; Ansari, S.A.; Alam, F.; Azam, A. Immobilization of Aspergillus oryaze β galactosidase in zinc oxide nanoparticles via simple adsorption mechanism. Inter. J. Biol. Macromol. 2011, 49, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.Y.; Li, X.; Zhang, R.F. Immobilization of Candida rugosa lipase in ZnO nanowires/microporous silica composite for biocatalytic synthesis of phytosterol esters. Mater. Res. Bull. 2015, 68, 336–342. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Liu, C.; Wang, X.; Zhou, Y.; Wang, R. Optimization of penicillin G acylase immobilized on glutaraldehyde-modified titanium dioxide. Biotechnol. Appl. Chem. 2020, 66, 990–998. [Google Scholar] [CrossRef]
- Liu, J.; Ma, R.; Shi, Y. An immobilization enzyme for screening lipase inhibitors from Tibetan medicine. J. Chromatogr. A 2020, 1615, 460711. [Google Scholar] [CrossRef]
- Antecka, K.; Zdarta, J.; Siwinska-Stefanska, K.; Sztuk, G.; Jankowska, E.; Oleskowicz-Popiel, P.; Jesionowski, T. Synergistic degradation of dye wastewaters using binary or ternary oxide systems with immobilized laccase. Catalysts 2018, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Nandgaonkar, A.G.; Wang, Q.; Zhang, J.; Krause, W.E.; Wei, Q.; Lucia, L.A. Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo- and bio-catalytic dye degradation. J. Membr. Sci. 2017, 525, 89–98. [Google Scholar] [CrossRef]
- Khakshoor, M.; Makhdoumi, A.; Asoodeh, A.; Hosseindokht, M.R. Co-immobilized spore laccase/TiO2 nanoparticles in the alginate beads enhance dye removal by two-step decolorization. Environ. Sci. Poll. Res. 2021, 28, 6099–6110. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, T.; Lv, Z.; Cui, M.; Zhao, Z.; Cao, X.; Wei, Q. TiO2 Sol-gel coated PAN/O-MMT multi-functional composite nanofibrous membrane used as the support for laccase immobilization: Synergistic effect between the membrane support and enzyme for dye degradation. Polymers 2020, 12, 139. [Google Scholar] [CrossRef] [Green Version]
- Li, W.X.; Sun, H.Y.; Zhang, R.F. Immobilization of laccase on a novel ZnO/SiO2 nano-composited support for dye decolorization. IOP Conf. Ser. Mater. Sci. Eng. 2015, 87, 012033. [Google Scholar] [CrossRef] [Green Version]
- Rani, M.; Shanker, U.; Chaurasia, A.K. Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: Degradation of Alizarin Red S dye. J. Environ. Chem. Eng. 2017, 5, 2730–2739. [Google Scholar] [CrossRef]
- Siwinska-Stefanska, K.; Kubiak, A.; Piasecki, A.; Goscianska, J.; Nowaczyk, G.; Jurga, S.; Jesionowski, T. TiO2-ZnO binary oxide systems: Comprehensive characterization and tests of photocatalytic activity. Materials 2018, 11, 841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Stevens, J.S.; De Luca, A.C.; Pelendritis, M.; Terenghi, G.; Downes, S.; Schroeder, S.L.M. Quantitative Analysis of Complex Amino Acids and RGD Peptides by X-Ray Photoelectron Spectroscopy (XPS). Surf. Interface Anal. 2013, 45, 1238–1246. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Wang, Q.; Fan, X.; Dong, A.; Yu, Y.; Wang, P. Laccase-mediated in situ oxidation of dopa for bio-inspired coloration of silk fabric. RSC Adv. 2017, 7, 12977–12983. [Google Scholar] [CrossRef] [Green Version]
- Min, K.; Kim, J.; Park, K.; Yoo, Y.J. Enzyme immobilization on carbon nanomaterials: Loading density investigation and zeta potential analysis. J. Mol. Catal. B Enzym. 2012, 83, 87–93. [Google Scholar] [CrossRef]
- Schachschal, S.; Adler, H.J.; Pich, A.; Wetzel, S.; Matura, A.; van Pee, K.H. Encapsulation of enzymes in microgels by polymerization/cross-linking in aqueous droplets. Colloid. Polym. Sci. 2011, 289, 693–698. [Google Scholar] [CrossRef]
- Habimana, P.; Gao, J.; Mwizerwa, J.P.; Ndayambaje, J.B.; Liu, H.; Luan, P.; Ma, L.; Jiang, Y. Improvement of laccase activity via covalent immobilization over mesoporous silica coated magnetic multiwalled carbon nanotubes for the discoloration of synthetic dyes. ACS Omega 2021, 6, 2777–2789. [Google Scholar] [CrossRef]
- Nadaroglua, H.; Mosbera, G.; Gungora, A.A.; Adıguzeld, G.; Adiguzele, A. Biodegradation of some azo dyes from wastewater with laccase from Weissella viridescens LB37 immobilized on magnetic chitosan nanoparticles. J. Water Process Eng. 2019, 3, 1100866. [Google Scholar] [CrossRef]
- Amari, A.; Alzahrani, F.M.; Alsaiari, N.S.; Katubi, K.M.; Rebah, F.B.; Mohamed, A.T. Magnetic metal organic framework immobilized laccase for wastewater decolorization. Processes 2021, 9, 774. [Google Scholar] [CrossRef]
- Si, J.; Peng, F.; Cui, B. Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresour. Technol. 2013, 128, 49–57. [Google Scholar] [CrossRef]
- Yang, X.Q.; Zhao, X.X.; Liu, C.Y.; Zheng, Y.; QIian, S.J. Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem. 2009, 44, 1185–1189. [Google Scholar] [CrossRef]
- Bansal, P.; Sud, D. Photodegradation of commercial dye, CI Reactive Blue 160 using ZnO nanopowder: Degradation pathway and identification of intermediates by GC/MS. Sep. Purif. Technol. 2012, 85, 112–119. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Sun, J.; Fareed, M.F.; Kenawy, E.R.; Ali, S.S. Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Sci. Rep. 2020, 10, 12370. [Google Scholar] [CrossRef] [PubMed]
- Davila-Jimenez, M.M.; Elizalde-Gonzalez, M.P.; Garcia-Diaz, E.; Marin-Cevada, V.; Zequineli-Perez, J. Photodegradation of the anthraquinonic dye AcidGreen25 by TiO2 immobilized on carbonized avocado kernels: Intermediates and toxicity. Appl. Catal. B 2015, 166–167, 241–250. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Kumar, A. Enhanced degradation of anthraquinone dyes by microbial monoculture and developed consortium through the production of specific enzymes. Sci. Rep. 2021, 11, 7678. [Google Scholar] [CrossRef]
Name | Class | Chemical Structure |
---|---|---|
C.I. Reactive Black 5 | Azo dye | |
C.I. Acid Green 25 | Anthraquinone dye | |
Immobilization Number | P, mg/gsupport | IY, % |
---|---|---|
1 | 470.4 | 99.4 |
2 | 470.7 | 99.5 |
3 | 468.6 | 99.4 |
4 | 468.9 | 99.4 |
Average | 469.6 ± 0.9 | 99.4 + 0.05 |
Sample Name | ABET, m2/g | Vp, cm3/g | Sp, nm |
---|---|---|---|
TiO2/ZnO | 77 | 0.11 | 5.8 |
TiO2/ZnO/LTV | 126 | 0.14 | 4.3 |
Support | Activity after 10 Cycles | Activity in 3–6 pH Range | Activity in 30–70 °C Temperature Range | Dye Removed | DE, % | Ref. |
---|---|---|---|---|---|---|
TiO2/ZrO2 | - | - | - | Alizarin Red S | 60 | [39] |
Remazol Brilliant Blue R | 70 | |||||
Reactive Black | 15 | |||||
TiO2/cellulose | 30% | >20% | >50% | Reactive Red X-3B | 80 | [40] |
TiO2 nanoparticles | - | >20% | >30% | Indigo Carmine | 90 | [41] |
Alizarin Red | 60 | |||||
Trypan Blue | 90 | |||||
Malachite Green | 90 | |||||
TiO2/PAN/O-MMT | 50% | >20% | >50% | Crystal Violet | 80 | [42] |
ZnO/SiO2 | - | - | - | Remazol Brilliant Blue R | 85 | [43] |
Acid Blue 25 | 80 | |||||
ZnO chelated with Cu2+ | - | - | - | Alizarin Red S | 95 | [44] |
Fe3O4-MWCNT@SiO2 | 80% | >40% | >70% | Reactive Black | 65 | [50] |
Acid Red 88 | 98 | |||||
Eriochrome Black T | 99 | |||||
Magnetic chitosan nanoparticles | 40% | >30% | >50% | Acid Red 37 | 90 | [51] |
Reactive Black 5 | 90 | |||||
Evans Blue | 90 | |||||
Direct Blue T | 90 | |||||
Fe3O4-NH2@MIL-101(Cr) | - | >70% | >50% | Alizarin Red S | 90 | [52] |
Reactive Black 5 | 80 | |||||
TiO2/ZnO | 45% | >20% | >40% | Reactive Black 5 | 99 | This study |
Acid Green 25 | 70 |
Dye | Compound | Chemical Structure | Chemical Formula | m/z *, Da |
---|---|---|---|---|
C.I. Reactive Black 5 | A | | C10H10ON2 | 175 |
B | | C8H10O3S | 187 | |
C | | C8H11O2NS | 185 | |
C.I. Acid Green 25 | D | | C8H7O3NS | 186 |
E | | C7H5O6S | 217 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołodziejczak-Radzimska, A.; Zembrzuska, J.; Siwińska-Ciesielczyk, K.; Jesionowski, T. Catalytic and Physicochemical Evaluation of a TiO2/ZnO/Laccase Biocatalytic System: Application in the Decolorization of Azo and Anthraquinone Dyes. Materials 2021, 14, 6030. https://doi.org/10.3390/ma14206030
Kołodziejczak-Radzimska A, Zembrzuska J, Siwińska-Ciesielczyk K, Jesionowski T. Catalytic and Physicochemical Evaluation of a TiO2/ZnO/Laccase Biocatalytic System: Application in the Decolorization of Azo and Anthraquinone Dyes. Materials. 2021; 14(20):6030. https://doi.org/10.3390/ma14206030
Chicago/Turabian StyleKołodziejczak-Radzimska, Agnieszka, Joanna Zembrzuska, Katarzyna Siwińska-Ciesielczyk, and Teofil Jesionowski. 2021. "Catalytic and Physicochemical Evaluation of a TiO2/ZnO/Laccase Biocatalytic System: Application in the Decolorization of Azo and Anthraquinone Dyes" Materials 14, no. 20: 6030. https://doi.org/10.3390/ma14206030
APA StyleKołodziejczak-Radzimska, A., Zembrzuska, J., Siwińska-Ciesielczyk, K., & Jesionowski, T. (2021). Catalytic and Physicochemical Evaluation of a TiO2/ZnO/Laccase Biocatalytic System: Application in the Decolorization of Azo and Anthraquinone Dyes. Materials, 14(20), 6030. https://doi.org/10.3390/ma14206030