Chirality and Magnetocaloricity in GdFeTeO6 as Compared to GdGaTeO6
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation, Phase Analysis and Structural Studies
2.2. Physical Measurements
3. Results and Discussion
3.1. Crystal Structures of GdMTeO6 (M = Fe, Ga)
3.2. Basic Properties
3.3. Magnetocaloric Effect
3.4. Density Functional Calculations
3.5. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasiliev, A.; Volkova, O.; Zvereva, E.; Markina, M. Milestones of low-D quantum magnetism. NPJ Quantum Mater. 2018, 3, 18. [Google Scholar] [CrossRef][Green Version]
- Vasil’ev, A.N.; Markina, M.M.; Popova, E.A. Spin gap in low-dimensional magnets. Low Temp. Phys. 2005, 31, 203–223. [Google Scholar] [CrossRef]
- Basso, R.; Lucchetti, G.; Zefiro, L.; Palenzona, A. Rosiaite, PbSb2O6, a new mineral from the Cetine mine, Siena, Italy. Eur. J. Miner. 1996, 8, 487–492. [Google Scholar] [CrossRef][Green Version]
- Nakua, A.; Greedan, J. Structural and magnetic properties of transition-metal arsenates, AAs2O6, A = Mn, Co, and Ni. J. Solid State Chem. 1995, 118, 402–411. [Google Scholar] [CrossRef]
- Nikulin, A.Y.; Zvereva, E.A.; Nalbandyan, V.B.; Shukaev, I.L.; Kurbakov, A.I.; Kuchugura, M.D.; Raganyan, G.V.; Popov, Y.V.; Ivanchenko, V.D.; Vasiliev, A.N. Preparation and characterization of metastable trigonal layered MSb2O6 phases (M = Co, Ni, Cu, Zn, and Mg) and considerations on FeSb2O6. Dalton Trans. 2017, 46, 6059–6068. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Reehuis, M.; Saha-Dasgupta, T.; Orosel, D.; Nuss, J.; Rahaman, B.; Keimer, B.; Andersen, O.; Jansen, M. Magnetic properties of PdAs2O6: A dilute spin system with an unusually high Neel temperature. Phys. Rev. B 2012, 85, 115118. [Google Scholar] [CrossRef][Green Version]
- Nalbandyan, V.; Evstigneeva, M.; Vasilchikova, T.; Bukhteev, K.; Vasiliev, A.; Zvereva, E. Trigonal layered rosiaite-related antiferromagnet MnSnTeO6: Ion-exchange preparation, structure and magnetic properties. Dalton Trans. 2018, 47, 14760–14766. [Google Scholar] [CrossRef] [PubMed]
- Kasper, H.M. LnCrTeO6—A new series of compounds based on the PbSb2O6 structure. Mater. Res. Bull. 1969, 4, 33–38. [Google Scholar] [CrossRef]
- Lavat, A.; Mercader, C.; Baran, E. Crystallographic and spectroscopic characterization of LnFeTeO6 (Ln = La, Pr, Nd, Sm) materials. J. Alloys Compd. 2010, 508, 24–27. [Google Scholar] [CrossRef]
- Phatak, R.; Krishnan, K.; Kulkarni, N.; Achary, S.; Banerjee, A.; Sali, S. Crystal structure, magnetic and thermal properties of LaFeTeO6. Mater. Res. Bull. 2010, 45, 1978–1983. [Google Scholar] [CrossRef]
- Rao, G.N.; Sankar, R.; Muthuselvam, I.P.; Chou, F.C. Magnetic and thermal property studies of RCrTeO6 (R = trivalent lanthanides) with layered honeycomb sublattices. J. Magn. Magn. Mater. 2014, 370, 13–17. [Google Scholar] [CrossRef]
- Liu, J.; Ouyang, Z.; Liu, X.; Cao, J.; Wang, J.; Xia, Z.; Rao, G. Decoupling of Gd-Cr magnetism and giant magnetocaloric effect in layered honeycomb tellurate GdCrTeO6. J. Appl. Phys. 2020, 127, 173902. [Google Scholar] [CrossRef]
- Lei, D.; Ouyang, Z.; Yue, X.; Yin, L.; Wang, Z.; Wang, J.; Xia, Z.; Rao, G. Weak magnetic interaction, large magnetocaloric effect, and underlying spin model in triangular lattice GdFeTeO6. J. Appl. Phys. 2018, 124, 233904. [Google Scholar] [CrossRef]
- Kim, S.W.; Deng, Z.; Fischer, Z.; Lapidus, S.H.; Stephens, P.W.; Li, M.-R.; Greenblatt, M. Structure and magnetic behavior of layered honeycomb tellurates, BiM(III)TeO6 (M = Cr, Mn, Fe). Inorg. Chem. 2016, 55, 10229–10237. [Google Scholar] [CrossRef] [PubMed]
- Yafet, Y.; Kittel, C. Antiferromagnetic arrangements in ferrites. Phys. Rev. 1952, 87, 290–294. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Larson, A.; Von Dreele, R. General Structure Analysis System (GSAS); Report LAUR 86-748; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004. [Google Scholar]
- Toby, B. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef][Green Version]
- Gagné, O.; Hawthorne, F. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. Sect. B 2015, 71, 562–578. [Google Scholar] [CrossRef][Green Version]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Blöchl, P. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef][Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dudarev, S.; Botton, G.; Savrasov, S.; Humphreys, C.; Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef][Green Version]
- Krukau, A.; Vydrov, O.; Izmaylov, A.; Scuseria, G. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef]
- Kurz, P.; Bihlmayer, G.; Blügel, S. Magnetism and electronic structure of hcp Gd and the Gd (0001) surface. J. Phys. Condens. Matter 2002, 14, 6353–6371. [Google Scholar] [CrossRef]
- Duan, C.-G.; Sabiryanov, R.; Mei, W.; Dowben, P.; Jaswal, S.; Tsymbal, E. Electronic, magnetic and transport properties of rare-earth monopnictides. J. Phys. Condens. Matter 2007, 19, 315220. [Google Scholar] [CrossRef]
- Stroppa, A.; Marsman, M.; Kresse, G.; Picozzi, S. The multiferroic phase of DyFeO3: An ab initio study. New J. Phys. 2010, 12, 093026. [Google Scholar] [CrossRef]
- Zhao, H.; Bellaiche, L.; Chen, X.; Íñiguez, J. Improper electric polarization in simple perovskite oxides with two magnetic sublattices. Nat. Commun. 2017, 8, 14025. [Google Scholar] [CrossRef]
- Kümmel, S.; Kronik, L. Orbital-dependent density functionals: Theory and applications. Rev. Mod. Phys. 2008, 80, 3–60. [Google Scholar] [CrossRef][Green Version]
- Tian, Y.; Ouyang, J.L.; Hiao, H.B.; Zhang, Y.K. Structural and magnetocaloric properties in the aeschynite type GdCrWO6 and ErCrWO6 oxides. Ceram. Int. 2021, 47, 29197–29204. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Tang, B.Z.; Peng, P.; Xia, L.; Ding, D. Large magnetic entropy change and adiabatic temperature rise of a ternary Gd34Ni33Al33 metallic glass. J. Rare Earths 2021, 39, 998–1002. [Google Scholar] [CrossRef]
- Liu, T.; Liu, X.Y.; Gao, Y.; Jin, H.; He, J.; Sheng, X.L.; Jin, W.T.; Chen, Z.Y.; Li, W. Significant inverse magnetocaloric effect induced by quantum criticality. Phys. Rev. Res. 2021, 3, 033094. [Google Scholar] [CrossRef]
- Shi, J.H.; Seehra, M.S.; Dang, Y.L.; Suib, S.L.; Jain, M. Comparison of the dielectric and magnetocaloric properties of bulk and film of GdFe0.5Cr0.5O3. J. Appl. Phys. 2021, 129, 243904. [Google Scholar] [CrossRef]
- Shi, J.H.; Sauyet, T.; Dang, Y.L.; Suib, S.L.; Seehra, M.; Jain, M. Structure-property correlations and scaling in the magnetic and magnetocaloric properties of GdCrO3 particles. J. Phys. Condens. Matter 2021, 33, 205801. [Google Scholar] [CrossRef] [PubMed]
- Tokiwa, Y.; Bachus, S.; Kawita, K.; Jesche, A.; Tsirlin, A.A.; Gegenwart, P. Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures. Commun. Mater. 2021, 2, 42. [Google Scholar] [CrossRef]
GdFeTeO6 | GdGaTeO6 | ||
---|---|---|---|
a, Å | 5.16556(5) | 5.11096(6) | |
c, Å | 9.85231(14) | 9.91922(17) | |
c/a | 1.907 | 1.941 | |
Distances/sum of radii/BVS | Gd-O | 2.3283(10) × 6/2.30/2.73 | 2.280(10) × 6/2.30/3.06 |
M-O | 2.0141(9) × 6/2.005/3.01 | 1.929(10) × 6/1.98/3.43 | |
Te-O | 1.9301(8) × 6/1.92/5.88 | 2.029(10) × 6/1.92/5.02 | |
O: BVS | 1.94 | 1.92 | |
Angles (°) | Gd-O-Te | 130.31(4) | 126.8(5) |
Te-O-M | 98.22(4) | 96.4(4) | |
M-O-Gd | 125.78(4) | 132.4(5) | |
Sum for O | 354.3 | 355.6 | |
O-Gd-O | 88.0–92.0 | 86.2–93.8 | |
O-M-O | 79.7–94.2 | 86.2–91.7 | |
O-Te-O | 83.9–92.1 | 81.0–94.3 |
Effective Exchange Jije = SiSjJij (meV) | Jij for JGd = 7/2, SFe = 5/2 (meV) | |||
---|---|---|---|---|
PBE + U | HSE | PBE + U | HSE | |
−0.4683 | −0.0356 | −0.0749 | −0.0057 | |
−0.0263 | 0.0169 | −0.0042 | 0.0027 | |
−0.0382 | −0.0993 | −0.0044 | −0.0113 | |
−0.1831 | −0.1182 | −0.0293 | −0.0189 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zvereva, E.; Vasilchikova, T.; Evstigneeva, M.; Tyureva, A.; Nalbandyan, V.; Gonçalves, J.; Barone, P.; Stroppa, A.; Vasiliev, A. Chirality and Magnetocaloricity in GdFeTeO6 as Compared to GdGaTeO6. Materials 2021, 14, 5954. https://doi.org/10.3390/ma14205954
Zvereva E, Vasilchikova T, Evstigneeva M, Tyureva A, Nalbandyan V, Gonçalves J, Barone P, Stroppa A, Vasiliev A. Chirality and Magnetocaloricity in GdFeTeO6 as Compared to GdGaTeO6. Materials. 2021; 14(20):5954. https://doi.org/10.3390/ma14205954
Chicago/Turabian StyleZvereva, Elena, Tatyana Vasilchikova, Maria Evstigneeva, Angelica Tyureva, Vladimir Nalbandyan, João Gonçalves, Paolo Barone, Alessandro Stroppa, and Alexander Vasiliev. 2021. "Chirality and Magnetocaloricity in GdFeTeO6 as Compared to GdGaTeO6" Materials 14, no. 20: 5954. https://doi.org/10.3390/ma14205954