Amorphous Silicon Oxynitride-Based Powders Produced by Spray Pyrolysis from Liquid Organosilicon Compounds
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khader, I.; Koplin, C.; Schröder, C.; Stockmann, J.; Beckert, W.; Kunz, W.; Kailer, A. Characterization of a silicon nitride ceramic material for ceramic springs. J. Eur. Ceram. Soc. 2020, 40, 3541–3554. [Google Scholar] [CrossRef]
- Badran, Z.; Struillou, X.; Hughes, F.J.; Soueidan, A.; Hoornaert, A.; Ide, M. Silicon nitride (Si3N4) implants: The future of dental implantology? J. Oral. Implantol. 2017, 43, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.; Xiao, W. Silicon nitride bioceramics in healthcare. Int. J. Appl. Ceram. Technol. 2018, 15, 861–872. [Google Scholar] [CrossRef]
- Sakka, S. Oxynitride glasses. Ann. Rev. Mater. Sci. 1986, 16, 29–46. [Google Scholar] [CrossRef]
- Bickmore, C.R.; Laine, R. Synthesis of oxynitride powders via fluidized-bed ammonolysis, Part I: Large, porous, silica particles. J. Am. Ceram. Soc. 1996, 79, 2865–2877. [Google Scholar] [CrossRef]
- Hampshire, S.; Drew, R.A.; Jack, K.H. Oxynitride glasses. Phys. Chem. Glasses 1985, 26, 182–186. [Google Scholar]
- Garcia, Á.R.; Clausell, C.; Barba, A. Oxynitride glasses: A review. Bol. Soc. Esp. Ceram. Vidr. 2016, 55, 209–218. [Google Scholar] [CrossRef]
- Ali, S.; Jonson, B.; Pomeroy, M.J.; Hampshire, S. Issues associated with the development of transparent oxynitride glasses. Ceram. Int. 2015, 41, 3345–3354. [Google Scholar] [CrossRef]
- Hampshire, S.; Pomeroy, M.J. Oxynitride glasses. Int. J. Appl. Ceram. Technol. 2008, 5, 155–163. [Google Scholar] [CrossRef]
- Hakeem, A.S.; Dauce, R.; Leonova, E.; Eden, M.; Shen, Z.J.; Grins, J.; Esmaeilzadeh, S. Silicate glasses with unprecedented high nitrogen and electropositive metal contents obtained by using metals as precursors. Adv. Mater. 2005, 17, 2214–2216. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yin, X. Study on in-situ reaction synthesis and mechanical properties of Si2N2O ceramic. Ceram. Int. 2013, 39, 3035–3041. [Google Scholar] [CrossRef]
- Wu, S.; Li, X. In-situ reactive synthesis of Si2N2O ceramics and its properties. Metall. Mater. Trans. 2012, A43, 4859–4865. [Google Scholar] [CrossRef]
- Wu, S.; Li, X. Preparation of pure nano-grained Si2N2O ceramic. Int. J. Refract. Met. Hard Mater. 2013, 36, 97–100. [Google Scholar] [CrossRef]
- Bergman, B.; Heping, H. The influence of different oxides on the formation of Si2N2O from SiO2 and Si3N4. J. Eur. Ceram. Soc. 1990, 6, 3–8. [Google Scholar] [CrossRef]
- Fruhstorfer, J.; Kerber, F.; Weigelt, C.; Moritz, K.; Aneziris, C.G. Activated reaction synthesis of silicon oxynitride from silica and silicon nitride. Ceram. Int. 2018, 44, 8467–8475. [Google Scholar] [CrossRef]
- Sitarz, M.; Czosnek, C.; Jelen, P.; Odziomek, M.; Olejniczak, Z.; Kozanecki, M.; Janik, J.F. SiOC glasses produced from silsesquioxanes by the aerosol-assisted vapor synthesis method. Spectrochim. Acta A 2013, 112, 440–445. [Google Scholar] [CrossRef]
- Czosnek, C.; Janik, J.F. Particle morphology of various SiC-based nanocomposite powders made by the aerosol-assisted synthesis method. J. Nanosci. Nanotechnol. 2008, 8, 907–913. [Google Scholar] [CrossRef]
- Czosnek, C.; Kluska, S.; Janik, J.F. Aerosol-assisted synthesis of SiC-based nanopowders from organosilicon precursor systems. Mater. Sci. Pol. 2008, 26, 309–318. [Google Scholar]
- Czosnek, C.; Bucko, M.M.; Janik, J.F.; Olejniczak, Z.; Bystrzejewski, M.; Łabędź, O.; Huczko, A. Preparation of silicon carbide SiC-based nanopowders by the aerosol-assisted synthesis and the DC thermal plasma synthesis methods. Mater. Res. Bull. 2015, 63, 164–172. [Google Scholar] [CrossRef]
- Czosnek, C.; Janik, J.F. Nanopowder silicon carbide and carbon/silicon carbide composites prepared by the aerosol-assisted synthesis. Przem. Chem. 2014, 93, 2020–2024. [Google Scholar]
- Li, F.J.; Wakihara, T.; Tatami, J.; Komeya, K.; Meguro, T. Synthesis of β-SiAlON powder by carbothermal reduction-nitridation of zeolites with different compositions. J. Eur. Ceram. Soc. 2007, 27, 2535–2540. [Google Scholar] [CrossRef]
- van Dijen, F.K.; Pluijmakers, J. The removal of carbon or carbon residues from ceramic powders or greenware with ammonia. J. Eur. Ceram. Soc. 1989, 5, 385–390. [Google Scholar] [CrossRef]
- Shang, H.; Lu, Y.; Zhao, F.; Chao, C.; Zhang, B.; Zhang, H. Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium. RSC Adv. 2015, 5, 75728–75734. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, J.; Yan, F.; Tian, S.; Lia, K. A novel low temperature vapor phase hydrolysis method for the production of nano-structured silica materials using silicon tetrachloride. RSC Adv. 2014, 4, 8703–8710. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Subhani, T.; Husain, S.W. Synthesis and characterization of silica nanoparticles from clay. J. Asian Ceram. Soc. 2016, 4, 91–96. [Google Scholar] [CrossRef]
- Krasovskii, P.V.; Samokhin, A.V.; Kirpichev, D.E.; Sigalaev, S.K.; Sirotinkin, V.P. Carbon forms, carbide yield and impurity-driven nonstoichiometry of plasma-generated β-silicon carbide nanopowders. Mater. Chem. Phys. 2020, 253, 123077. [Google Scholar] [CrossRef]
- Pujar, V.V.; Cawley, J.D. Computer simulations of diffraction effects due to stacking faults in β-SiC: II, Experimental verification. J. Am. Ceram. Soc. 2001, 84, 2645–2651. [Google Scholar] [CrossRef]
- Grabowska, B.; Sitarz, M.; Olejnik, E.; Kaczmarska, K. FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch—Part I. Spectrochim. Acta Part A 2015, 135, 529–535. [Google Scholar] [CrossRef]
- Grabowska, B.; Sitarz, M.; Olejnik, E.; Kaczmarska, K. FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch—In moulding sands, Part II. Spectrochim. Acta Part A 2015, 151, 27–33. [Google Scholar] [CrossRef]
- Sitarz, M. The structure of simple silicate glasses in the light of Middle Infrared spectroscopy studies. J. Non-Cryst. Solids 2011, 357, 1603–1608. [Google Scholar] [CrossRef]
- Fan, J.Y.; Li, H.X.; Cui, W.N. Microstructure and infrared spectral properties of porous polycrystalline and nanocrystalline cubic silicon carbide. Appl. Phys. Lett. 2009, 95, 021906. [Google Scholar] [CrossRef]
- Sitarz, M.; Jastrzębski, W.; Jeleń, P.; Długoń, E.; Gawęda, M. Preparation and structural studies of black glasses based on ladder-like silsesquioxanes. Spectrochim. Acta Part A 2014, 132, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Bik, M.; Jeleń, P.; Długoń, E.; Bik, E.; Mroczka, K.; Barańska, M.; Sitarz, M. SiAlOC glasses derived from sol-gel synthesized ladder-like silsesquioxanes. Ceram. Int. 2019, 45, 1683–1690. [Google Scholar] [CrossRef]
- Jelen, P.; Szumera, M.; Gaweda, M.; Długoń, E.; Sitarz, M. Thermal evolution of ladder-like silsesquioxanes during formation of black glasses. J. Therm. Anal. Calorim. 2017, 130, 103–111. [Google Scholar] [CrossRef]
- Handke, M.; Sitarz, M.; Długoń, E. Amorphous SiCxOy coatings from ladder-like polysilsesquioxanes. J. Mol. Struct. 2011, 993, 193–197. [Google Scholar] [CrossRef]
- Viard, J.; Beche, E.; Perarnau, D.; Berjoran, R.; Durand, J. XPS and FTIR study of silicon oxynitride thin films. J. Eur. Ceram. Soc. 1997, 17, 2025–2028. [Google Scholar] [CrossRef]
- Cross, T.J.; Raj, R.; Prasad, S.V.; Tallant, D.R. Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(urea) methyl vinyl silazane. Int. J. Appl. Ceram. Technol. 2006, 3, 113–126. [Google Scholar] [CrossRef]
- Muñoz, F.; Benne, D.; Pascual, L.; Rocherullé, J.; Marchand, R.; Rűssel, C.; Durán, A. Silicon oxynitride glasses produced by ammonolysis from colloidal silica. J. Non-Cryst. Solids 2004, 345–346, 647–652. [Google Scholar]
- Wong, C.K.; Wong, H.; Kok, C.W.; Chan, M. Silicon oxynitride prepared by chemical vapor deposition as optical waveguide materials. J. Cryst. Growth 2006, 288, 171–175. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Costa, S.; Borowiak-Palen, E.; Kruszyńska, M.; Bachmatiuk, A.; Kaleńczuk, R.J. Characterization of carbon nanotubes by Raman spectroscopy. Mater. Sci. Pol. 2008, 26, 433–441. [Google Scholar]
- Yapuchura, E.R.; Tartaglia, R.S.; Cunha, A.G.; Freitas, J.C.C.; Emmerich, F.G. Observation of the transformation of silica phytoliths into SiC and SiO2 particles in biomass-derived carbons by using SEM/EDS, Raman spectroscopy, and XRD. J. Mater. Sci. 2019, 54, 3761–3777. [Google Scholar] [CrossRef]
- Czosnek, C.; Baran, P.; Grzywacz, P.; Baran, P.; Janik, J.F.; Różycka, A.; Sitarz, M.; Jeleń, P. Generation of carbon nanostructures with diverse morphologies by the catalytic aerosol-assisted vapor-phase synthesis method. Comptes Rendus Chim. 2015, 18, 1198–1204. [Google Scholar] [CrossRef]
- Bik, M.; Szewczyk, J.; Jeleń, P.; Długoń, E.; Simka, W.; Sowa, M.; Tyczkowski, J.; Balcerzak, J.; Bik, E.; Mroczka, K.; et al. Optimization of the formation of coatings based on SiAlOC glasses via structural, microstructural and electrochemical studies. Electrochim. Acta 2019, 309, 44–56. [Google Scholar] [CrossRef]
- Bik, M.; Stygar, M.; Jeleń, P.; Dąbrowa, J.; Leśniak, M.; Brylewski, T.; Sitarz, M. Protective-conducting coatings based on black glasses (SiOC) for application in Solid Oxide Fuel Cells. Int. J. Hydrog. Energy 2017, 42, 27298–27307. [Google Scholar] [CrossRef]
- Jeleń, P.; Bik, M.; Nocuń, M.; Gawęda, M.; Długoń, E.; Sitarz, M. Free carbon phase in SiOC glasses derived from ladder-like silsesquioxanes. J. Mol. Struct. 2016, 1126, 172–176. [Google Scholar] [CrossRef]
- Karlin, S.; Colomban, P.H. Raman study of the chemical and thermal degradation of as-received and sol-gel embedded Nicalon and Hi-Nicalon SiC fibres used in ceramic matrix composites. J. Raman Spectrosc. 1997, 28, 219–228. [Google Scholar] [CrossRef]
- Colomban, P.; Gouadec, G.; Mazerolles, L. Raman analysis of materials corrosion: The example of SiC fibers. Mater. Corros. 2002, 53, 306–315. [Google Scholar] [CrossRef]
- Sui, Z.; Leong, P.P.; Herman, I.P.; Higashi, G.S.; Temkin, H. Raman analysis of light-emitting porous silicon. Appl. Phys. Lett. 1992, 60, 2086–2088. [Google Scholar] [CrossRef]
- Voutsasa, A.T.; Hatalis, M.K.; Boyce, J.; Chiang, A. Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition. J. Appl. Phys. 1995, 78, 6999–7006. [Google Scholar] [CrossRef]
Precursor | Gas Atmosphere | Temperature [°C] | O Content [wt %] | N Content [wt %] | O/N [at %/at %] | C Free [wt %] |
---|---|---|---|---|---|---|
MTMS | NH3 | 1200 | 39.1 | 14.7 | 2.3 | <1 |
1400 | 33.6 | 18.5 | 1.6 | <1 | ||
1600 | 26.0 | 19.3 | 1.2 | <1 | ||
N2 | 1200 | 32.5 | 1.6 | 17.8 | 18.5 | |
1400 | 24.4 | 1.5 | 14.2 | 20.5 | ||
1600 | 16.1 | 2.9 | 4.9 | 21.4 | ||
MTES | NH3 | 1200 | 39.0 | 13.4 | 2.5 | <1 |
1400 | 35.1 | 17.1 | 1.8 | <1 | ||
1600 | 32.9 | 15.7 | 1.8 | <1 | ||
N2 | 1200 | 27.0 | 1.6 | 14.8 | 42.8 | |
1400 | 27.8 | 1.5 | 16.2 | 40.7 | ||
1600 | 10.7 | 2.5 | 3.7 | 51.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osip, H.; Czosnek, C.; Janik, J.F.; Marchewka, J.; Sitarz, M. Amorphous Silicon Oxynitride-Based Powders Produced by Spray Pyrolysis from Liquid Organosilicon Compounds. Materials 2021, 14, 386. https://doi.org/10.3390/ma14020386
Osip H, Czosnek C, Janik JF, Marchewka J, Sitarz M. Amorphous Silicon Oxynitride-Based Powders Produced by Spray Pyrolysis from Liquid Organosilicon Compounds. Materials. 2021; 14(2):386. https://doi.org/10.3390/ma14020386
Chicago/Turabian StyleOsip, Honorata, Cezary Czosnek, Jerzy F. Janik, Jakub Marchewka, and Maciej Sitarz. 2021. "Amorphous Silicon Oxynitride-Based Powders Produced by Spray Pyrolysis from Liquid Organosilicon Compounds" Materials 14, no. 2: 386. https://doi.org/10.3390/ma14020386
APA StyleOsip, H., Czosnek, C., Janik, J. F., Marchewka, J., & Sitarz, M. (2021). Amorphous Silicon Oxynitride-Based Powders Produced by Spray Pyrolysis from Liquid Organosilicon Compounds. Materials, 14(2), 386. https://doi.org/10.3390/ma14020386